Study on the development of a quaternary layer of B4C-TiB2-Al3Ti-Al in AA7050 / B4C Ex-Situ composite and influence of heat treatment on mechanical and wear properties / Arvind Kumar and Ram Naresh Rai

In the current investigation, AA7050-B4C composite developed through flux assisted (K2TiF6 flux) stir casting method. The FESEM microstructure studies confirm the uniform distribution of the reinforcements. The EDAX analysis confirms the formation of the intermetallic phase of TiB2 and Al3Ti acro...

Full description

Bibliographic Details
Main Authors: Kumar*,, Arvind, Rai, Ram Naresh
Format: Article
Language:English
Published: Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM) 2020
Subjects:
Online Access:https://ir.uitm.edu.my/id/eprint/36562/
_version_ 1848809084823797760
author Kumar*,, Arvind
Rai, Ram Naresh
author_facet Kumar*,, Arvind
Rai, Ram Naresh
author_sort Kumar*,, Arvind
building UiTM Institutional Repository
collection Online Access
description In the current investigation, AA7050-B4C composite developed through flux assisted (K2TiF6 flux) stir casting method. The FESEM microstructure studies confirm the uniform distribution of the reinforcements. The EDAX analysis confirms the formation of the intermetallic phase of TiB2 and Al3Ti across the interface of B4C particles and the aluminium matrix. The developed composite was heat treatment as per T-6 specifications, and a comparative study has been done on microstructures, mechanical properties and wear properties for ascast composite(ACC) and Heat-treated composite (HTC). The effect of heat treatment on the microstructure and bond mechanism shows that the B4C particles are fairly incorporated in the matrix. Ti decomposes and forms quaternary layers of B4C-TiB2-Al3Ti-Al across B4C particles. These layers not only prevent the decomposition of B4C particles into the matrix, also acts as the effective load transfer layers. Consequently, there is an enhancement in tensile strength by 16.4%, hardness by 15.9%, compressive strength by 14.8%, and impact strength by 10.9%. This may be due to the interface strengthening and precipitation hardening mechanism. There is a significant reduction in wear rate and coefficient of friction after heat treatment; this may be due to the improvement in hardness and compressive strength of the composite.
first_indexed 2025-11-14T23:09:00Z
format Article
id uitm-36562
institution Universiti Teknologi MARA
institution_category Local University
language English
last_indexed 2025-11-14T23:09:00Z
publishDate 2020
publisher Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM)
recordtype eprints
repository_type Digital Repository
spelling uitm-365622020-11-10T04:28:50Z https://ir.uitm.edu.my/id/eprint/36562/ Study on the development of a quaternary layer of B4C-TiB2-Al3Ti-Al in AA7050 / B4C Ex-Situ composite and influence of heat treatment on mechanical and wear properties / Arvind Kumar and Ram Naresh Rai jmeche Kumar*,, Arvind Rai, Ram Naresh TJ Mechanical engineering and machinery In the current investigation, AA7050-B4C composite developed through flux assisted (K2TiF6 flux) stir casting method. The FESEM microstructure studies confirm the uniform distribution of the reinforcements. The EDAX analysis confirms the formation of the intermetallic phase of TiB2 and Al3Ti across the interface of B4C particles and the aluminium matrix. The developed composite was heat treatment as per T-6 specifications, and a comparative study has been done on microstructures, mechanical properties and wear properties for ascast composite(ACC) and Heat-treated composite (HTC). The effect of heat treatment on the microstructure and bond mechanism shows that the B4C particles are fairly incorporated in the matrix. Ti decomposes and forms quaternary layers of B4C-TiB2-Al3Ti-Al across B4C particles. These layers not only prevent the decomposition of B4C particles into the matrix, also acts as the effective load transfer layers. Consequently, there is an enhancement in tensile strength by 16.4%, hardness by 15.9%, compressive strength by 14.8%, and impact strength by 10.9%. This may be due to the interface strengthening and precipitation hardening mechanism. There is a significant reduction in wear rate and coefficient of friction after heat treatment; this may be due to the improvement in hardness and compressive strength of the composite. Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM) 2020 Article PeerReviewed text en https://ir.uitm.edu.my/id/eprint/36562/1/36562.pdf Kumar*,, Arvind and Rai, Ram Naresh (2020) Study on the development of a quaternary layer of B4C-TiB2-Al3Ti-Al in AA7050 / B4C Ex-Situ composite and influence of heat treatment on mechanical and wear properties / Arvind Kumar and Ram Naresh Rai. (2020) Journal of Mechanical Engineering (JMechE) <https://ir.uitm.edu.my/view/publication/Journal_of_Mechanical_Engineering_=28JMechE=29.html>, 17 (2). pp. 129-139. ISSN 1823-5514 ; 2550-164X https://jmeche.uitm.edu.my/
spellingShingle TJ Mechanical engineering and machinery
Kumar*,, Arvind
Rai, Ram Naresh
Study on the development of a quaternary layer of B4C-TiB2-Al3Ti-Al in AA7050 / B4C Ex-Situ composite and influence of heat treatment on mechanical and wear properties / Arvind Kumar and Ram Naresh Rai
title Study on the development of a quaternary layer of B4C-TiB2-Al3Ti-Al in AA7050 / B4C Ex-Situ composite and influence of heat treatment on mechanical and wear properties / Arvind Kumar and Ram Naresh Rai
title_full Study on the development of a quaternary layer of B4C-TiB2-Al3Ti-Al in AA7050 / B4C Ex-Situ composite and influence of heat treatment on mechanical and wear properties / Arvind Kumar and Ram Naresh Rai
title_fullStr Study on the development of a quaternary layer of B4C-TiB2-Al3Ti-Al in AA7050 / B4C Ex-Situ composite and influence of heat treatment on mechanical and wear properties / Arvind Kumar and Ram Naresh Rai
title_full_unstemmed Study on the development of a quaternary layer of B4C-TiB2-Al3Ti-Al in AA7050 / B4C Ex-Situ composite and influence of heat treatment on mechanical and wear properties / Arvind Kumar and Ram Naresh Rai
title_short Study on the development of a quaternary layer of B4C-TiB2-Al3Ti-Al in AA7050 / B4C Ex-Situ composite and influence of heat treatment on mechanical and wear properties / Arvind Kumar and Ram Naresh Rai
title_sort study on the development of a quaternary layer of b4c-tib2-al3ti-al in aa7050 / b4c ex-situ composite and influence of heat treatment on mechanical and wear properties / arvind kumar and ram naresh rai
topic TJ Mechanical engineering and machinery
url https://ir.uitm.edu.my/id/eprint/36562/
https://ir.uitm.edu.my/id/eprint/36562/