Optimization and tribological properties of semi metallic friction materials / Aznifa Mahyam Zaharudin

The main goal of this work presented in this thesis was to study the tribological properties of newly formulated semi-metallic friction material under different manufacturing parameters, material constituents and friction test parameters. In the first category, the optimization of manufacturing para...

Full description

Bibliographic Details
Main Author: Zaharudin, Aznifa Mahyam
Format: Book Section
Language:English
Published: Institute of Graduate Studies, UiTM 2017
Subjects:
Online Access:https://ir.uitm.edu.my/id/eprint/19727/
_version_ 1848804838246187008
author Zaharudin, Aznifa Mahyam
author_facet Zaharudin, Aznifa Mahyam
author_sort Zaharudin, Aznifa Mahyam
building UiTM Institutional Repository
collection Online Access
description The main goal of this work presented in this thesis was to study the tribological properties of newly formulated semi-metallic friction material under different manufacturing parameters, material constituents and friction test parameters. In the first category, the optimization of manufacturing parameters (molding pressure, molding temperature and molding time) for producing the friction materials using powder metallurgy technique were investigated. The optimum manufacturing parameters were determined using Taguchi method where coefficient of friction (COF) and thickness loss were selected as the quality target. These optimal parameters were 500 kN molding pressure, 150oC molding temperature, and 600 seconds molding time. The results revealed that high molding pressure and temperature do not compulsorily produce the best performance in tribological properties. It could be explained by degradation of the resin structure and the loss of binding properties. The investigation also found that adequate molding time was required for sufficient binding of the tested materials. It was also observed that molding pressure has the strongest effect on physical and tribological properties. High molding pressure may cause the binder to separate from the brake friction material, thus less binder to hold the powder particles in the matrix. In the second category, a study was performed to investigate the effect of phenolic resin, rubber, calcium carbonate and graphite on the tribological properties. The samples were prepared under optimum manufacturing parameters…
first_indexed 2025-11-14T22:01:30Z
format Book Section
id uitm-19727
institution Universiti Teknologi MARA
institution_category Local University
language English
last_indexed 2025-11-14T22:01:30Z
publishDate 2017
publisher Institute of Graduate Studies, UiTM
recordtype eprints
repository_type Digital Repository
spelling uitm-197272018-06-07T06:29:25Z https://ir.uitm.edu.my/id/eprint/19727/ Optimization and tribological properties of semi metallic friction materials / Aznifa Mahyam Zaharudin Zaharudin, Aznifa Mahyam Malaysia The main goal of this work presented in this thesis was to study the tribological properties of newly formulated semi-metallic friction material under different manufacturing parameters, material constituents and friction test parameters. In the first category, the optimization of manufacturing parameters (molding pressure, molding temperature and molding time) for producing the friction materials using powder metallurgy technique were investigated. The optimum manufacturing parameters were determined using Taguchi method where coefficient of friction (COF) and thickness loss were selected as the quality target. These optimal parameters were 500 kN molding pressure, 150oC molding temperature, and 600 seconds molding time. The results revealed that high molding pressure and temperature do not compulsorily produce the best performance in tribological properties. It could be explained by degradation of the resin structure and the loss of binding properties. The investigation also found that adequate molding time was required for sufficient binding of the tested materials. It was also observed that molding pressure has the strongest effect on physical and tribological properties. High molding pressure may cause the binder to separate from the brake friction material, thus less binder to hold the powder particles in the matrix. In the second category, a study was performed to investigate the effect of phenolic resin, rubber, calcium carbonate and graphite on the tribological properties. The samples were prepared under optimum manufacturing parameters… Institute of Graduate Studies, UiTM 2017 Book Section PeerReviewed text en https://ir.uitm.edu.my/id/eprint/19727/1/ABS_AZNIFA%20MAHYAM%20ZAHARUDIN%20TDRA%20VOL%2011%20IGS%2017.pdf Zaharudin, Aznifa Mahyam (2017) Optimization and tribological properties of semi metallic friction materials / Aznifa Mahyam Zaharudin. (2017) In: The Doctoral Research Abstracts. IGS Biannual Publication, 11 (11). Institute of Graduate Studies, UiTM, Shah Alam.
spellingShingle Malaysia
Zaharudin, Aznifa Mahyam
Optimization and tribological properties of semi metallic friction materials / Aznifa Mahyam Zaharudin
title Optimization and tribological properties of semi metallic friction materials / Aznifa Mahyam Zaharudin
title_full Optimization and tribological properties of semi metallic friction materials / Aznifa Mahyam Zaharudin
title_fullStr Optimization and tribological properties of semi metallic friction materials / Aznifa Mahyam Zaharudin
title_full_unstemmed Optimization and tribological properties of semi metallic friction materials / Aznifa Mahyam Zaharudin
title_short Optimization and tribological properties of semi metallic friction materials / Aznifa Mahyam Zaharudin
title_sort optimization and tribological properties of semi metallic friction materials / aznifa mahyam zaharudin
topic Malaysia
url https://ir.uitm.edu.my/id/eprint/19727/