Enhancement of dielectric properties of PMMA:TiO2 nanocomposite for organic field effect transistors / Lyly Nyl Ismail
In this thesis, a composite between poly (methyl methacrylate) (PMMA) with titanium dioxide (Ti02) films were synthesized, fabricated and characterized using sol-gel spin coating technique. The dielectric, electrical and physical properties of PMMA:Ti02 nanocomposite films was were investigated, to...
| Main Author: | |
|---|---|
| Format: | Thesis |
| Language: | English |
| Published: |
2015
|
| Subjects: | |
| Online Access: | https://ir.uitm.edu.my/id/eprint/15359/ |
| _version_ | 1848803723120214016 |
|---|---|
| author | Ismail, Lyly Nyl |
| author_facet | Ismail, Lyly Nyl |
| author_sort | Ismail, Lyly Nyl |
| building | UiTM Institutional Repository |
| collection | Online Access |
| description | In this thesis, a composite between poly (methyl methacrylate) (PMMA) with titanium dioxide (Ti02) films were synthesized, fabricated and characterized using sol-gel spin coating technique. The dielectric, electrical and physical properties of PMMA:Ti02 nanocomposite films was were investigated, to be used as the dielectric layer in the metal-insulator-semiconductor (MIS) device and organic field effect transistors (OFET) application. The goal of this study is to enhance the dielectric properties of PMMA with the influence of TiC^nanopowder (high-A;) material in the PMMA. Another goal is to overcome the leakage current (tunnelling current) and high operating voltage in MIS and OFET devices.
PMMA:TiC>2 nanocomposite dielectric films deposition parameter were optimized resulting in good dielectric, electrical and physical properties. Results from the parameter optimization showed that the dielectric properties of PMMA:Ti02 nanocomposite film, which is focusing on the real permittivity, e\ imaginary permittivity, 6" and capacitance were improved. The real permittivity, e' of PMMA:Ti02 nanocomposite film was 12 and 10 measured at 1 kHz and 1MHz,
respectively. These values are higher than pure PMMA film which was 4.6 and 2.9, respectively measured at the same frequency. The capacitance value for PMMA:Ti02 nanocomposite film increased drastically from 296 pF/cm2 (for pure PMMA) to 457
9 o nF/cm . The leakage current density for PMMA:Ti02 nanocomposite film was ~ 10" A/cm2 under small electric field of 0.25 MV/cm is due to the addition of Ti02 nanoparticles. Metal-insulator-semiconductor (MIS) structure was used to investigate the compatibility of PMMA:TiC>2 nanocomposite film to be used as dielectric layer with ZnO and P3HT semiconductor layers. The capacitance-voltage (C-V) characteristics indicated that density of interface of trapped charge was found to be 9 x 109 eV_1cm'2.
In addition, the MIS exhibited leakage current of 10"6 A/cm2 at IV and relatively high breakdown voltage (2.05MV/cm). Small hysteresis was observed in C-V and I-V characteristics which were associated with ion drift and polarisation of the PMMA:Ti02 nanocomposite dielectric film. Finally, OFET devices with PMMA:TiC>2 nanocomposite as gate dielectric were demonstrated. The OFET performance proved that PMMA:Ti02 nanocomposite dielectric films were compatible with organic and inorganic semiconductors. Low threshold voltage, VTH was obtained for n-type and p-type OFET was around 2 V and
-3 V respectively, due to the increment in the e' and capacitance value of the PMMA:Ti02 nanocomposite dielectric film. The fabricated OFET using PMMA:Ti02 as dielectric layer showed almost comparable characteristics reported by other researcher. |
| first_indexed | 2025-11-14T21:43:46Z |
| format | Thesis |
| id | uitm-15359 |
| institution | Universiti Teknologi MARA |
| institution_category | Local University |
| language | English |
| last_indexed | 2025-11-14T21:43:46Z |
| publishDate | 2015 |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | uitm-153592016-11-16T06:30:35Z https://ir.uitm.edu.my/id/eprint/15359/ Enhancement of dielectric properties of PMMA:TiO2 nanocomposite for organic field effect transistors / Lyly Nyl Ismail Ismail, Lyly Nyl Production of electricity by direct energy conversion In this thesis, a composite between poly (methyl methacrylate) (PMMA) with titanium dioxide (Ti02) films were synthesized, fabricated and characterized using sol-gel spin coating technique. The dielectric, electrical and physical properties of PMMA:Ti02 nanocomposite films was were investigated, to be used as the dielectric layer in the metal-insulator-semiconductor (MIS) device and organic field effect transistors (OFET) application. The goal of this study is to enhance the dielectric properties of PMMA with the influence of TiC^nanopowder (high-A;) material in the PMMA. Another goal is to overcome the leakage current (tunnelling current) and high operating voltage in MIS and OFET devices. PMMA:TiC>2 nanocomposite dielectric films deposition parameter were optimized resulting in good dielectric, electrical and physical properties. Results from the parameter optimization showed that the dielectric properties of PMMA:Ti02 nanocomposite film, which is focusing on the real permittivity, e\ imaginary permittivity, 6" and capacitance were improved. The real permittivity, e' of PMMA:Ti02 nanocomposite film was 12 and 10 measured at 1 kHz and 1MHz, respectively. These values are higher than pure PMMA film which was 4.6 and 2.9, respectively measured at the same frequency. The capacitance value for PMMA:Ti02 nanocomposite film increased drastically from 296 pF/cm2 (for pure PMMA) to 457 9 o nF/cm . The leakage current density for PMMA:Ti02 nanocomposite film was ~ 10" A/cm2 under small electric field of 0.25 MV/cm is due to the addition of Ti02 nanoparticles. Metal-insulator-semiconductor (MIS) structure was used to investigate the compatibility of PMMA:TiC>2 nanocomposite film to be used as dielectric layer with ZnO and P3HT semiconductor layers. The capacitance-voltage (C-V) characteristics indicated that density of interface of trapped charge was found to be 9 x 109 eV_1cm'2. In addition, the MIS exhibited leakage current of 10"6 A/cm2 at IV and relatively high breakdown voltage (2.05MV/cm). Small hysteresis was observed in C-V and I-V characteristics which were associated with ion drift and polarisation of the PMMA:Ti02 nanocomposite dielectric film. Finally, OFET devices with PMMA:TiC>2 nanocomposite as gate dielectric were demonstrated. The OFET performance proved that PMMA:Ti02 nanocomposite dielectric films were compatible with organic and inorganic semiconductors. Low threshold voltage, VTH was obtained for n-type and p-type OFET was around 2 V and -3 V respectively, due to the increment in the e' and capacitance value of the PMMA:Ti02 nanocomposite dielectric film. The fabricated OFET using PMMA:Ti02 as dielectric layer showed almost comparable characteristics reported by other researcher. 2015 Thesis NonPeerReviewed text en https://ir.uitm.edu.my/id/eprint/15359/1/TP_LYLY%20NYL%20ISMAIL%20EE%2015_5.pdf Ismail, Lyly Nyl (2015) Enhancement of dielectric properties of PMMA:TiO2 nanocomposite for organic field effect transistors / Lyly Nyl Ismail. (2015) PhD thesis, thesis, Universiti Teknologi MARA. |
| spellingShingle | Production of electricity by direct energy conversion Ismail, Lyly Nyl Enhancement of dielectric properties of PMMA:TiO2 nanocomposite for organic field effect transistors / Lyly Nyl Ismail |
| title | Enhancement of dielectric properties of PMMA:TiO2 nanocomposite for organic field effect transistors / Lyly Nyl Ismail |
| title_full | Enhancement of dielectric properties of PMMA:TiO2 nanocomposite for organic field effect transistors / Lyly Nyl Ismail |
| title_fullStr | Enhancement of dielectric properties of PMMA:TiO2 nanocomposite for organic field effect transistors / Lyly Nyl Ismail |
| title_full_unstemmed | Enhancement of dielectric properties of PMMA:TiO2 nanocomposite for organic field effect transistors / Lyly Nyl Ismail |
| title_short | Enhancement of dielectric properties of PMMA:TiO2 nanocomposite for organic field effect transistors / Lyly Nyl Ismail |
| title_sort | enhancement of dielectric properties of pmma:tio2 nanocomposite for organic field effect transistors / lyly nyl ismail |
| topic | Production of electricity by direct energy conversion |
| url | https://ir.uitm.edu.my/id/eprint/15359/ |