A framework for predicting employee health risks using Ensemble Model

Through the phenomenon of data, big data and data analytics have provided an opportunity to collect, store, process, analyze and visualize an immense amount of information. Healthcare is recognized as one of the most information-intensive sectors. An urge to explore analytics has been sparked by th...

Full description

Bibliographic Details
Main Authors: Chan, Nicholas Kin Whai, Lee, Angela Siew Hoong *, Zuraini Zainol
Format: Article
Published: Institute of Advanced Science Extension (IASE) 2021
Subjects:
Online Access:http://eprints.sunway.edu.my/1840/
_version_ 1848802145719025664
author Chan, Nicholas Kin Whai
Lee, Angela Siew Hoong *
Zuraini Zainol,
author_facet Chan, Nicholas Kin Whai
Lee, Angela Siew Hoong *
Zuraini Zainol,
author_sort Chan, Nicholas Kin Whai
building SU Institutional Repository
collection Online Access
description Through the phenomenon of data, big data and data analytics have provided an opportunity to collect, store, process, analyze and visualize an immense amount of information. Healthcare is recognized as one of the most information-intensive sectors. An urge to explore analytics has been sparked by the rapid growth of data within the healthcare sector. Most employers in Malaysia provide medical benefits that are included in the medical insurance plan for their employees. Data collected such as the history of medical claims are stored with the HR (Human Resource) which contributes to the potential of analyzing and recognizing trends within medical claims to better understand the use and overall health of the employee population. Patients with higher risk will generally convert into patients with high costs. Hence, early intervention of these patients will allow employers to potentially minimize costs and plan preventative steps. In predictive analysis, Decision Trees and Regression are typical techniques applied. The proposed framework combines an ensemble technique known as Stacking. As opposed to a single predictive model, an ensemble predictive model would yield better performance and accuracy. The objective of this paper is therefore to review current practices and past research within the healthcare sector while suggesting a practical framework for classification ensemble modeling. Preliminary findings indicated that an ensemble model can produce higher predictive accuracy and performance than a single model.
first_indexed 2025-11-14T21:18:42Z
format Article
id sunway-1840
institution Sunway University
institution_category Local University
last_indexed 2025-11-14T21:18:42Z
publishDate 2021
publisher Institute of Advanced Science Extension (IASE)
recordtype eprints
repository_type Digital Repository
spelling sunway-18402021-10-13T03:00:45Z http://eprints.sunway.edu.my/1840/ A framework for predicting employee health risks using Ensemble Model Chan, Nicholas Kin Whai Lee, Angela Siew Hoong * Zuraini Zainol, QA75 Electronic computers. Computer science Through the phenomenon of data, big data and data analytics have provided an opportunity to collect, store, process, analyze and visualize an immense amount of information. Healthcare is recognized as one of the most information-intensive sectors. An urge to explore analytics has been sparked by the rapid growth of data within the healthcare sector. Most employers in Malaysia provide medical benefits that are included in the medical insurance plan for their employees. Data collected such as the history of medical claims are stored with the HR (Human Resource) which contributes to the potential of analyzing and recognizing trends within medical claims to better understand the use and overall health of the employee population. Patients with higher risk will generally convert into patients with high costs. Hence, early intervention of these patients will allow employers to potentially minimize costs and plan preventative steps. In predictive analysis, Decision Trees and Regression are typical techniques applied. The proposed framework combines an ensemble technique known as Stacking. As opposed to a single predictive model, an ensemble predictive model would yield better performance and accuracy. The objective of this paper is therefore to review current practices and past research within the healthcare sector while suggesting a practical framework for classification ensemble modeling. Preliminary findings indicated that an ensemble model can produce higher predictive accuracy and performance than a single model. Institute of Advanced Science Extension (IASE) 2021 Article PeerReviewed Chan, Nicholas Kin Whai and Lee, Angela Siew Hoong * and Zuraini Zainol, (2021) A framework for predicting employee health risks using Ensemble Model. International Journal of Advanced and Applied Sciences, 8 (9). pp. 29-38. ISSN 2313-3724 http://doi.org/10.21833/ijaas.2021.09.004 doi:10.21833/ijaas.2021.09.004
spellingShingle QA75 Electronic computers. Computer science
Chan, Nicholas Kin Whai
Lee, Angela Siew Hoong *
Zuraini Zainol,
A framework for predicting employee health risks using Ensemble Model
title A framework for predicting employee health risks using Ensemble Model
title_full A framework for predicting employee health risks using Ensemble Model
title_fullStr A framework for predicting employee health risks using Ensemble Model
title_full_unstemmed A framework for predicting employee health risks using Ensemble Model
title_short A framework for predicting employee health risks using Ensemble Model
title_sort framework for predicting employee health risks using ensemble model
topic QA75 Electronic computers. Computer science
url http://eprints.sunway.edu.my/1840/
http://eprints.sunway.edu.my/1840/
http://eprints.sunway.edu.my/1840/