Nanostructured lithium-free oxyanion cathode, LixCo2(MoO4)(3) [0 <= x < 3] for 3 V class lithium batteries
Abstract: A new nanostructured framework-type polyanion material, Li (x) Co-2(MoO4)(3) [0 <= x < 3], was studied as a positive electrode for use in 3-Volt class lithium-ion cells for the first time. The new material was synthesized in a lithium-free composition and examined its structure, mor...
| Main Authors: | K. M., Begam, M. S., Michael, S. R. S., Prabaharan |
|---|---|
| Format: | Conference or Workshop Item |
| Language: | English |
| Published: |
2008
|
| Subjects: | |
| Online Access: | http://scholars.utp.edu.my/id/eprint/2351/ http://scholars.utp.edu.my/id/eprint/2351/1/SAMPLE_PAPER_PDF.pdf |
Similar Items
Nanostructured lithium-free oxyanion cathode, Li x Co 2(MoO4)3 [0∈x∈<3] for 3 v class lithium batteries
by: Kasim Rawthar, Mumtaj Begam, et al.
Published: (2008)
by: Kasim Rawthar, Mumtaj Begam, et al.
Published: (2008)
Synthesis and redox properties of LixNi2(MoO4)3: a new 3-V class positive electrode material for rechargeable lithium batteries
by: Prabaharan, S.R.S., et al.
Published: (2004)
by: Prabaharan, S.R.S., et al.
Published: (2004)
A new NASICON-type polyanion, LixNi2(MoO4)3 as 3-V class positive electrode material for rechargeable lithium batteries
by: BEGAM, K
Published: (2004)
by: BEGAM, K
Published: (2004)
New NASICON type oxyanion high capacity anode, Li2Co 2(MoO4)3, for lithium-ion batteries: Preliminary studies
by: Michael , M.S., et al.
Published: (2008)
by: Michael , M.S., et al.
Published: (2008)
Synthesis of a Polyanion Cathode Material, Li[sub 2]Co[sub 2](MoO[sub 4])[sub 3], and Its Electrochemical Properties for Lithium Batteries
by: Prabaharan, S. R. S., et al.
Published: (2004)
by: Prabaharan, S. R. S., et al.
Published: (2004)
Characterization of soft-combustion-derived NASICON-type Li2Co2(MoO4)3 for lithium batteries
by: PRABAHARAN, S
Published: (2004)
by: PRABAHARAN, S
Published: (2004)
Synthesis and redox behavior of a new polyanion compound, Li2Co2(MoO4)3, as 4 V class positive electrode material for lithium batteries
by: Begam, K. M., et al.
Published: (2004)
by: Begam, K. M., et al.
Published: (2004)
New NASICON-type Li2Ni2(MoO4)3 as a positive electrode material for rechargeable lithium batteries
by: PRABAHARAN, S
Published: (2004)
by: PRABAHARAN, S
Published: (2004)
New Lithiated NASICON-Type Li[sub 2]Ni[sub 2](MoO[sub 4])[sub 3] for Rechargeable Lithium Batteries
by: Begam, K. M., et al.
Published: (2004)
by: Begam, K. M., et al.
Published: (2004)
Enhanced cycling properties of transition metal molybdates, Li x M2(MoO4)3 {0∈x∈<∈3} [M∈=∈Co,Ni]: A nanocomposite approach for lithium batteries
by: K.M., Begam, et al.
Published: (2007)
by: K.M., Begam, et al.
Published: (2007)
Stress-strain relationships of LixSn alloys for lithium ion batteries
by: Gao, X., et al.
Published: (2016)
by: Gao, X., et al.
Published: (2016)
MoO3 nanoparticle coatings on high-voltage 5 V LiNi0.5 Mn1.5 O4 cathode materials for improving lithium-ion battery performance
by: Wu, Zong-Han, et al.
Published: (2022)
by: Wu, Zong-Han, et al.
Published: (2022)
A ternary sulphonium composite Cu3BiS3/S as cathode materials for lithium–sulfur batteries
by: Gao, X., et al.
Published: (2016)
by: Gao, X., et al.
Published: (2016)
Optical hydrogen sensing properties of nanostructured Pd/MoO3 films.
by: Yaacob, Mohd. Hanif, et al.
Published: (2011)
by: Yaacob, Mohd. Hanif, et al.
Published: (2011)
Binder-free a-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector
by: Sun, Y., et al.
Published: (2013)
by: Sun, Y., et al.
Published: (2013)
Facile synthesis of a MoO2-Mo2C-C composite and its application as favorable anode material for lithium-ion batteries
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
Soft-combustion synthesis of a new cathode-active material, LiVWO6, for lithium-ion batteries
by: Prabaharan, S.R.S., et al.
Published: (2001)
by: Prabaharan, S.R.S., et al.
Published: (2001)
Surfactant-free self-assembly of reduced graphite oxide-MoO2 nanobelt composites used as electrode for lithium-ion batteries
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
Sulfur-nickel foam as cathode materials for lithium-sulfur batteries
by: Cheng, J., et al.
Published: (2015)
by: Cheng, J., et al.
Published: (2015)
Optimization of synthesis condition and the electrochemical properties of LiVMO6−δ (M=Mo or W) as candidate positive electrode material for lithium batteries
by: Prabaharan, S
Published: (2002)
by: Prabaharan, S
Published: (2002)
Preparation and characterization of lithiated cathode materials for lithium batteries / Shanti Navaratnam
by: Navaratnam, Shanti
Published: (2001)
by: Navaratnam, Shanti
Published: (2001)
Modified template synthesis and electrochemical performance of a Co3O4/mesoporous cathode for lithium–oxygen batteries
by: Wang, S., et al.
Published: (2015)
by: Wang, S., et al.
Published: (2015)
Understanding degradation in lithium-ion and lithium-air batteries
by: McNulty, Rory
Published: (2023)
by: McNulty, Rory
Published: (2023)
High performance semitransparent organic solar cells with 5% PCE using non-patterned MoO3/Ag/MoO3 anode
by: Upama, M., et al.
Published: (2017)
by: Upama, M., et al.
Published: (2017)
Mathematical Modelling of Lithium-ion Concentration in Rechargeable Lithium Batteries
by: Siti Aishah Hashim Ali,
Published: (2011)
by: Siti Aishah Hashim Ali,
Published: (2011)
Phosphate polyanion materials as high-voltage lithium-ion battery cathode: A review
by: JinKiong, Ling, et al.
Published: (2021)
by: JinKiong, Ling, et al.
Published: (2021)
A new cathode material LiCu2O2 for secondary lithium batteries
by: Jacob, M. Milburn Ebenezer, et al.
Published: (2000)
by: Jacob, M. Milburn Ebenezer, et al.
Published: (2000)
The solid-state chelation synthesis of LiNi1/3Co1/3Mn1/3O2 as a cathode material for lithium-ion batteries
by: Jiang, X., et al.
Published: (2015)
by: Jiang, X., et al.
Published: (2015)
Air-stable doping of Bi2Se3 by MoO3 into the topological regime
by: Edmonds, M., et al.
Published: (2015)
by: Edmonds, M., et al.
Published: (2015)
Sulfur@metal cotton with superior cycling stability as cathode materials for rechargeable lithium–sulfur batteries
by: Zhang, J., et al.
Published: (2015)
by: Zhang, J., et al.
Published: (2015)
Kinetics study of hydrogen adsorption over Pt/MoO3
by: Triwahyono, Sugeng, et al.
Published: (2010)
by: Triwahyono, Sugeng, et al.
Published: (2010)
Lithium battery recycling management and policy
by: Rahman, Mohammed Ataur, et al.
Published: (2016)
by: Rahman, Mohammed Ataur, et al.
Published: (2016)
Lithium metal oxides (metal = manganese, chromium, cobalt, or aluminium) as cathode in lithium ion batery
by: Rahman, Mohd. Mokhlesur
Published: (2006)
by: Rahman, Mohd. Mokhlesur
Published: (2006)
A hierarchical Zn2Mo3O8 nanodots–porous carbon composite as a superior anode for lithium-ion batteries
by: Zhu, Y., et al.
Published: (2016)
by: Zhu, Y., et al.
Published: (2016)
Li2NiTiO4?a new positive electrode for lithium batteries: soft-chemistry synthesis and electrochemical characterization
by: PRABAHARAN, S
Published: (2004)
by: PRABAHARAN, S
Published: (2004)
Insight into lithium transport in lithium nitridometallate battery materials from muon spin relaxation
by: Powell, Andrew S., et al.
Published: (2013)
by: Powell, Andrew S., et al.
Published: (2013)
Dodecylamine-Induced Synthesis of a Nitrogen-Doped Carbon Comb for Advanced Lithium-Sulfur Battery Cathodes
by: Lu, Q., et al.
Published: (2018)
by: Lu, Q., et al.
Published: (2018)
Influences of plasma treatment parameters on the hydrophobicity of cathode and anode materials from spent lithium-ion batteries.
by: Ren, Xibing, et al.
Published: (2024)
by: Ren, Xibing, et al.
Published: (2024)
Synthesis And Electrochemical Properties Of Licoo2 Cathode With Graphite Or Graphene Anode For Aqueous Rechargeable Lithium Batteries
by: Aziz, Nur Azilina Abdul
Published: (2018)
by: Aziz, Nur Azilina Abdul
Published: (2018)
Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product
by: Tan, P., et al.
Published: (2017)
by: Tan, P., et al.
Published: (2017)
Similar Items
-
Nanostructured lithium-free oxyanion cathode, Li x Co 2(MoO4)3 [0∈x∈<3] for 3 v class lithium batteries
by: Kasim Rawthar, Mumtaj Begam, et al.
Published: (2008) -
Synthesis and redox properties of LixNi2(MoO4)3: a new 3-V class positive electrode material for rechargeable lithium batteries
by: Prabaharan, S.R.S., et al.
Published: (2004) -
A new NASICON-type polyanion, LixNi2(MoO4)3 as 3-V class positive electrode material for rechargeable lithium batteries
by: BEGAM, K
Published: (2004) -
New NASICON type oxyanion high capacity anode, Li2Co 2(MoO4)3, for lithium-ion batteries: Preliminary studies
by: Michael , M.S., et al.
Published: (2008) -
Synthesis of a Polyanion Cathode Material, Li[sub 2]Co[sub 2](MoO[sub 4])[sub 3], and Its Electrochemical Properties for Lithium Batteries
by: Prabaharan, S. R. S., et al.
Published: (2004)