Comparative evaluation of adsorption kinetics and isotherms of a natural product removal by Amberlite polymeric adsorbents (vol 146, pg 370, 2009)

Adsorption mechanism of a natural compound, alizarin (1,2-dihydroxyanthraquinone), onto three types of microporous polymeric adsorbents (XAD-4, XAD-7, XAD-16) has been proposed using Langmuir, Freundlich and Redlich–Petersen isotherms. Adsorption capacity and optimum adsorption isotherms were predic...

Full description

Bibliographic Details
Main Authors: M. A., Abdullah, L., Chiang, M., Nadeem
Format: Article
Language:English
Published: ELSEVIER SCIENCE SA, PO BOX 564, 1001 LAUSANNE, SWITZERLAND 2009
Subjects:
Online Access:http://scholars.utp.edu.my/id/eprint/2334/
http://scholars.utp.edu.my/id/eprint/2334/1/SAMPLE_PAPER_PDF.pdf
_version_ 1848659232020234240
author M. A., Abdullah
L., Chiang
M., Nadeem
author_facet M. A., Abdullah
L., Chiang
M., Nadeem
author_sort M. A., Abdullah
building UTP Institutional Repository
collection Online Access
description Adsorption mechanism of a natural compound, alizarin (1,2-dihydroxyanthraquinone), onto three types of microporous polymeric adsorbents (XAD-4, XAD-7, XAD-16) has been proposed using Langmuir, Freundlich and Redlich–Petersen isotherms. Adsorption capacity and optimum adsorption isotherms were predicted by linear least squares and non-linear regression method. Adsorption kinetics was proposed by pseudo-first and second second order models. The adsorption capacity of XAD-16 was the highest at 0.0424 mg/mg, with initial alizarin concentration of 200 mg/L. Pseudo-second-order kinetics was more appropriate in explaining the adsorption mechanism than pseudo-first-order. Over the studied concentration ranges, only XAD-4 adsorption can be reasonably described by the three isotherms. XAD-16 data is only best-fitted to Langmuir and Redlich–Petersen isotherms. Non-linear method proved a better way to predict the equilibrium isotherm parameters. The combination of parameters, such as specific surface area, pore diameter, polarity of the network of the resins, the solubility and polarity of the adsorbate, are the significant parameters for optimum adsorption process.
first_indexed 2025-11-13T07:27:09Z
format Article
id oai:scholars.utp.edu.my:2334
institution Universiti Teknologi Petronas
institution_category Local University
language English
last_indexed 2025-11-13T07:27:09Z
publishDate 2009
publisher ELSEVIER SCIENCE SA, PO BOX 564, 1001 LAUSANNE, SWITZERLAND
recordtype eprints
repository_type Digital Repository
spelling oai:scholars.utp.edu.my:23342017-01-19T08:25:47Z http://scholars.utp.edu.my/id/eprint/2334/ Comparative evaluation of adsorption kinetics and isotherms of a natural product removal by Amberlite polymeric adsorbents (vol 146, pg 370, 2009) M. A., Abdullah L., Chiang M., Nadeem TP Chemical technology Adsorption mechanism of a natural compound, alizarin (1,2-dihydroxyanthraquinone), onto three types of microporous polymeric adsorbents (XAD-4, XAD-7, XAD-16) has been proposed using Langmuir, Freundlich and Redlich–Petersen isotherms. Adsorption capacity and optimum adsorption isotherms were predicted by linear least squares and non-linear regression method. Adsorption kinetics was proposed by pseudo-first and second second order models. The adsorption capacity of XAD-16 was the highest at 0.0424 mg/mg, with initial alizarin concentration of 200 mg/L. Pseudo-second-order kinetics was more appropriate in explaining the adsorption mechanism than pseudo-first-order. Over the studied concentration ranges, only XAD-4 adsorption can be reasonably described by the three isotherms. XAD-16 data is only best-fitted to Langmuir and Redlich–Petersen isotherms. Non-linear method proved a better way to predict the equilibrium isotherm parameters. The combination of parameters, such as specific surface area, pore diameter, polarity of the network of the resins, the solubility and polarity of the adsorbate, are the significant parameters for optimum adsorption process. ELSEVIER SCIENCE SA, PO BOX 564, 1001 LAUSANNE, SWITZERLAND 2009 Article PeerReviewed application/pdf en http://scholars.utp.edu.my/id/eprint/2334/1/SAMPLE_PAPER_PDF.pdf M. A., Abdullah and L., Chiang and M., Nadeem (2009) Comparative evaluation of adsorption kinetics and isotherms of a natural product removal by Amberlite polymeric adsorbents (vol 146, pg 370, 2009). CHEMICAL ENGINEERING JOURNAL , 155 (1-2). p. 551. ISSN 1385-8947 http://apps.isiknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=36&SID=V2M3DaJN@i6obPF9OiE&page=1&doc=1 10.1016/j.cej.2009.07.027 10.1016/j.cej.2009.07.027
spellingShingle TP Chemical technology
M. A., Abdullah
L., Chiang
M., Nadeem
Comparative evaluation of adsorption kinetics and isotherms of a natural product removal by Amberlite polymeric adsorbents (vol 146, pg 370, 2009)
title Comparative evaluation of adsorption kinetics and isotherms of a natural product removal by Amberlite polymeric adsorbents (vol 146, pg 370, 2009)
title_full Comparative evaluation of adsorption kinetics and isotherms of a natural product removal by Amberlite polymeric adsorbents (vol 146, pg 370, 2009)
title_fullStr Comparative evaluation of adsorption kinetics and isotherms of a natural product removal by Amberlite polymeric adsorbents (vol 146, pg 370, 2009)
title_full_unstemmed Comparative evaluation of adsorption kinetics and isotherms of a natural product removal by Amberlite polymeric adsorbents (vol 146, pg 370, 2009)
title_short Comparative evaluation of adsorption kinetics and isotherms of a natural product removal by Amberlite polymeric adsorbents (vol 146, pg 370, 2009)
title_sort comparative evaluation of adsorption kinetics and isotherms of a natural product removal by amberlite polymeric adsorbents (vol 146, pg 370, 2009)
topic TP Chemical technology
url http://scholars.utp.edu.my/id/eprint/2334/
http://scholars.utp.edu.my/id/eprint/2334/
http://scholars.utp.edu.my/id/eprint/2334/
http://scholars.utp.edu.my/id/eprint/2334/1/SAMPLE_PAPER_PDF.pdf