Design of fuzzy logic based adaptive active power controller to enhance power sharing among DGs in an autonomous microgrid

This paper presents the design of an adaptive active power controller to enhance the power-sharing capabilities of distributed generators (DGs) in an autonomous microgrid. Each DG in an autonomous microgrid consists of a droop-controlled inverter to control active and reactive power by regulatin...

Full description

Bibliographic Details
Main Authors: Kinnari Matharani, Hitesh Jariwala
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia 2024
Online Access:http://journalarticle.ukm.my/25320/
http://journalarticle.ukm.my/25320/1/25.pdf
_version_ 1848816325648973824
author Kinnari Matharani,
Hitesh Jariwala,
author_facet Kinnari Matharani,
Hitesh Jariwala,
author_sort Kinnari Matharani,
building UKM Institutional Repository
collection Online Access
description This paper presents the design of an adaptive active power controller to enhance the power-sharing capabilities of distributed generators (DGs) in an autonomous microgrid. Each DG in an autonomous microgrid consists of a droop-controlled inverter to control active and reactive power by regulating frequency and voltage correspondingly. The high droop gain can be used in the power controller to encourage faster power sharing among the DGs. However, high droop gain can cause undamped growing oscillations during load fluctuations or generation losses. During such events, attaining faster power-sharing between DGs using high droop gains is difficult. So, the problem with an autonomous microgrid is the conflict between faster power sharing and stability. Stability needs to be compromised to attain quicker power sharing and vice versa. Hence, to achieve power-sharing swiftly with high droop gain and to diminish the growing oscillations caused, this paper proposes a fuzzy logic-based adaptive active power controller (FLAPC). The proposed FLAPC is adaptive and easy to implement. It offers faster power sharing for different values of droop gains and step change in load. The FLAPC is developed in MATLAB 2018a/Simulink environment, and time domain simulations are performed to see the efficacy of the proposed controller. The results of time domain simulations are compared with a droop controller without any additional controller, conventional lead-lag power system stabilizer, and proposed controller for step change in load at different droop gains. The results show that the proposed controller enhances the power-sharing performance and also ameliorates the system’s stability by reducing the settling time and overshoot in active power responses of DGs.
first_indexed 2025-11-15T01:04:05Z
format Article
id oai:generic.eprints.org:25320
institution Universiti Kebangasaan Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T01:04:05Z
publishDate 2024
publisher Penerbit Universiti Kebangsaan Malaysia
recordtype eprints
repository_type Digital Repository
spelling oai:generic.eprints.org:253202025-05-27T06:35:18Z http://journalarticle.ukm.my/25320/ Design of fuzzy logic based adaptive active power controller to enhance power sharing among DGs in an autonomous microgrid Kinnari Matharani, Hitesh Jariwala, This paper presents the design of an adaptive active power controller to enhance the power-sharing capabilities of distributed generators (DGs) in an autonomous microgrid. Each DG in an autonomous microgrid consists of a droop-controlled inverter to control active and reactive power by regulating frequency and voltage correspondingly. The high droop gain can be used in the power controller to encourage faster power sharing among the DGs. However, high droop gain can cause undamped growing oscillations during load fluctuations or generation losses. During such events, attaining faster power-sharing between DGs using high droop gains is difficult. So, the problem with an autonomous microgrid is the conflict between faster power sharing and stability. Stability needs to be compromised to attain quicker power sharing and vice versa. Hence, to achieve power-sharing swiftly with high droop gain and to diminish the growing oscillations caused, this paper proposes a fuzzy logic-based adaptive active power controller (FLAPC). The proposed FLAPC is adaptive and easy to implement. It offers faster power sharing for different values of droop gains and step change in load. The FLAPC is developed in MATLAB 2018a/Simulink environment, and time domain simulations are performed to see the efficacy of the proposed controller. The results of time domain simulations are compared with a droop controller without any additional controller, conventional lead-lag power system stabilizer, and proposed controller for step change in load at different droop gains. The results show that the proposed controller enhances the power-sharing performance and also ameliorates the system’s stability by reducing the settling time and overshoot in active power responses of DGs. Penerbit Universiti Kebangsaan Malaysia 2024 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/25320/1/25.pdf Kinnari Matharani, and Hitesh Jariwala, (2024) Design of fuzzy logic based adaptive active power controller to enhance power sharing among DGs in an autonomous microgrid. Jurnal Kejuruteraan, 36 (1). pp. 273-285. ISSN 0128-0198 https://www.ukm.my/jkukm/volume-3601-2024
spellingShingle Kinnari Matharani,
Hitesh Jariwala,
Design of fuzzy logic based adaptive active power controller to enhance power sharing among DGs in an autonomous microgrid
title Design of fuzzy logic based adaptive active power controller to enhance power sharing among DGs in an autonomous microgrid
title_full Design of fuzzy logic based adaptive active power controller to enhance power sharing among DGs in an autonomous microgrid
title_fullStr Design of fuzzy logic based adaptive active power controller to enhance power sharing among DGs in an autonomous microgrid
title_full_unstemmed Design of fuzzy logic based adaptive active power controller to enhance power sharing among DGs in an autonomous microgrid
title_short Design of fuzzy logic based adaptive active power controller to enhance power sharing among DGs in an autonomous microgrid
title_sort design of fuzzy logic based adaptive active power controller to enhance power sharing among dgs in an autonomous microgrid
url http://journalarticle.ukm.my/25320/
http://journalarticle.ukm.my/25320/
http://journalarticle.ukm.my/25320/1/25.pdf