Vision-based inspection of PCB soldering defects

Vision-based inspection of printed circuit board (PCB) soldering defects was studied for preparing feature data and classifying the overall PCB soldering defects on a PCB prototype into different classes. The image data of overall PCB soldering defects on a PCB prototype was developed using an i...

Full description

Bibliographic Details
Main Authors: Zailah W, Gan, B.Y.J., Leong, H.Y., Norsuzlin Mohd Sahar, Mohammad Tariqul Islam
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia 2022
Online Access:http://journalarticle.ukm.my/20582/
http://journalarticle.ukm.my/20582/1/06.pdf
_version_ 1848815140414160896
author Zailah W,
Gan, B.Y.J.
Leong, H.Y.
Norsuzlin Mohd Sahar,
Mohammad Tariqul Islam,
author_facet Zailah W,
Gan, B.Y.J.
Leong, H.Y.
Norsuzlin Mohd Sahar,
Mohammad Tariqul Islam,
author_sort Zailah W,
building UKM Institutional Repository
collection Online Access
description Vision-based inspection of printed circuit board (PCB) soldering defects was studied for preparing feature data and classifying the overall PCB soldering defects on a PCB prototype into different classes. The image data of overall PCB soldering defects on a PCB prototype was developed using an image sensor camera. Image data augmentation was conducted to enhance the dataset volume. Image pre-processing included image resizing, image colour conversion, and image denoising. Watershed-based image segmentation was performed in the image post-processing to segmented images; then, feature extraction was conducted using curvelet transform to prepare image feature data. The feature data as the statistical data include kurtosis, contrast, energy, homogeneity, and variance. These data were analysed, and the percentage difference of mean values of statistical data between image classes was calculated. Kurtosis had the highest percentage difference among the statistical data. In the comparison of the mean values, kurtosis obtained 4.97% difference for the class of good and medium condition; 17.02% difference for the good and bad condition; and 12.08% difference for the bad and medium condition. Through this analysis, kurtosis is considered more reliable data for the machine-learning based classification in this project. The extracted data can be applied in future studies to classify overall solder joint defects on a PCB prototype by artificial neural network in machine learning classification.
first_indexed 2025-11-15T00:45:15Z
format Article
id oai:generic.eprints.org:20582
institution Universiti Kebangasaan Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T00:45:15Z
publishDate 2022
publisher Penerbit Universiti Kebangsaan Malaysia
recordtype eprints
repository_type Digital Repository
spelling oai:generic.eprints.org:205822022-11-23T02:00:04Z http://journalarticle.ukm.my/20582/ Vision-based inspection of PCB soldering defects Zailah W, Gan, B.Y.J. Leong, H.Y. Norsuzlin Mohd Sahar, Mohammad Tariqul Islam, Vision-based inspection of printed circuit board (PCB) soldering defects was studied for preparing feature data and classifying the overall PCB soldering defects on a PCB prototype into different classes. The image data of overall PCB soldering defects on a PCB prototype was developed using an image sensor camera. Image data augmentation was conducted to enhance the dataset volume. Image pre-processing included image resizing, image colour conversion, and image denoising. Watershed-based image segmentation was performed in the image post-processing to segmented images; then, feature extraction was conducted using curvelet transform to prepare image feature data. The feature data as the statistical data include kurtosis, contrast, energy, homogeneity, and variance. These data were analysed, and the percentage difference of mean values of statistical data between image classes was calculated. Kurtosis had the highest percentage difference among the statistical data. In the comparison of the mean values, kurtosis obtained 4.97% difference for the class of good and medium condition; 17.02% difference for the good and bad condition; and 12.08% difference for the bad and medium condition. Through this analysis, kurtosis is considered more reliable data for the machine-learning based classification in this project. The extracted data can be applied in future studies to classify overall solder joint defects on a PCB prototype by artificial neural network in machine learning classification. Penerbit Universiti Kebangsaan Malaysia 2022 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/20582/1/06.pdf Zailah W, and Gan, B.Y.J. and Leong, H.Y. and Norsuzlin Mohd Sahar, and Mohammad Tariqul Islam, (2022) Vision-based inspection of PCB soldering defects. Jurnal Kejuruteraan, 34 (5). pp. 807-817. ISSN 0128-0198 https://www.ukm.my/jkukm/volume-3405-2022/
spellingShingle Zailah W,
Gan, B.Y.J.
Leong, H.Y.
Norsuzlin Mohd Sahar,
Mohammad Tariqul Islam,
Vision-based inspection of PCB soldering defects
title Vision-based inspection of PCB soldering defects
title_full Vision-based inspection of PCB soldering defects
title_fullStr Vision-based inspection of PCB soldering defects
title_full_unstemmed Vision-based inspection of PCB soldering defects
title_short Vision-based inspection of PCB soldering defects
title_sort vision-based inspection of pcb soldering defects
url http://journalarticle.ukm.my/20582/
http://journalarticle.ukm.my/20582/
http://journalarticle.ukm.my/20582/1/06.pdf