Hardy’s inequality for functions of several complex variables

We obtain a generalization of Hardy’s inequality for functions in the Hardy space H1 (Bd), where Bd is the unit ball {z = (z1, …, zd) ∈ In particular, we construct a function φ on the set of d –dimensional multi-indices {n = (n1, …, nd) | ni ∈   {0}} and prove that if f(z) = Σ anzn is a function...

Full description

Bibliographic Details
Main Authors: Vansak Sam, Kamthorn Chailuek
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia 2017
Online Access:http://journalarticle.ukm.my/11358/
http://journalarticle.ukm.my/11358/1/01%20Vansak%20Sam.pdf
_version_ 1848812699431993344
author Vansak Sam,
Kamthorn Chailuek,
author_facet Vansak Sam,
Kamthorn Chailuek,
author_sort Vansak Sam,
building UKM Institutional Repository
collection Online Access
description We obtain a generalization of Hardy’s inequality for functions in the Hardy space H1 (Bd), where Bd is the unit ball {z = (z1, …, zd) ∈ In particular, we construct a function φ on the set of d –dimensional multi-indices {n = (n1, …, nd) | ni ∈   {0}} and prove that if f(z) = Σ anzn is a function in H1 (Bd), then ≤ Moreover, our proof shows that this inequality is also valid for functions in Hardy space on the polydisk H1 (Bd).
first_indexed 2025-11-15T00:06:27Z
format Article
id oai:generic.eprints.org:11358
institution Universiti Kebangasaan Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T00:06:27Z
publishDate 2017
publisher Penerbit Universiti Kebangsaan Malaysia
recordtype eprints
repository_type Digital Repository
spelling oai:generic.eprints.org:113582018-02-12T01:12:02Z http://journalarticle.ukm.my/11358/ Hardy’s inequality for functions of several complex variables Vansak Sam, Kamthorn Chailuek, We obtain a generalization of Hardy’s inequality for functions in the Hardy space H1 (Bd), where Bd is the unit ball {z = (z1, …, zd) ∈ In particular, we construct a function φ on the set of d –dimensional multi-indices {n = (n1, …, nd) | ni ∈   {0}} and prove that if f(z) = Σ anzn is a function in H1 (Bd), then ≤ Moreover, our proof shows that this inequality is also valid for functions in Hardy space on the polydisk H1 (Bd). Penerbit Universiti Kebangsaan Malaysia 2017-09 Article NonPeerReviewed application/pdf en http://journalarticle.ukm.my/11358/1/01%20Vansak%20Sam.pdf Vansak Sam, and Kamthorn Chailuek, (2017) Hardy’s inequality for functions of several complex variables. Sains Malaysiana, 46 (9). pp. 1355-1359. ISSN 0126-6039 http://www.ukm.my/jsm/english_journals/vol46num9_2017/contentsVol46num9_2017.html
spellingShingle Vansak Sam,
Kamthorn Chailuek,
Hardy’s inequality for functions of several complex variables
title Hardy’s inequality for functions of several complex variables
title_full Hardy’s inequality for functions of several complex variables
title_fullStr Hardy’s inequality for functions of several complex variables
title_full_unstemmed Hardy’s inequality for functions of several complex variables
title_short Hardy’s inequality for functions of several complex variables
title_sort hardy’s inequality for functions of several complex variables
url http://journalarticle.ukm.my/11358/
http://journalarticle.ukm.my/11358/
http://journalarticle.ukm.my/11358/1/01%20Vansak%20Sam.pdf