Graphene for biomedical applications:a review

Since its discovery in 2004, graphene has enticed engineers and researchers from various fields to explore its possibilities to be incepted into various devices and applications. Graphene is deemed a ‘super’ material by researchers due to its extraordinary strength, extremely high surface-to-mass ra...

Full description

Bibliographic Details
Main Authors: Azrul Azlan Hamzah, Reena Sri Selvarajan, Burhanuddin Yeop Majlis
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia 2017
Online Access:http://journalarticle.ukm.my/11131/
http://journalarticle.ukm.my/11131/1/16%20Azrul%20Azlan.pdf
_version_ 1848812621282672640
author Azrul Azlan Hamzah,
Reena Sri Selvarajan,
Burhanuddin Yeop Majlis,
author_facet Azrul Azlan Hamzah,
Reena Sri Selvarajan,
Burhanuddin Yeop Majlis,
author_sort Azrul Azlan Hamzah,
building UKM Institutional Repository
collection Online Access
description Since its discovery in 2004, graphene has enticed engineers and researchers from various fields to explore its possibilities to be incepted into various devices and applications. Graphene is deemed a ‘super’ material by researchers due to its extraordinary strength, extremely high surface-to-mass ratio and superconducting properties. Nonetheless, graphene has yet to find plausible footing as an electronics material. In biomedical field, graphene has proved useful in tissue engineering, drug delivery, cancer teraphy, as a component in power unit for biomedical implants and devices and as a vital component in biosensors. Graphene is used as scaffolding for tissue regeneration in stem cell tissue engineering, as active electrodes in supercapacitor for powering wearable and implantable biomedical devices and as detectors in biosensors. In tissue engineering, the extreme strength of monolayer graphene enables it to hold stem cell tissues as scaffold during in-vitro cell regeneration process. In MEMS supercapacitor, graphene’s extremely high surface-to-mass ratio enables it to be used as electrodes in order to increase the power unit’s energy and power densities. A small yet having high energy and power densities cell is needed to power often space constrainted biomedical devices. In FET biosensors, graphene acts as detector electrodes, owing to its superconductivity property. Graphene detector electrodes is capable of detecting target molecules at a concentration level as low as 1 pM, making it the most sensitive biosensor available today. Graphene continues to envisage unique and exciting applications for biomedical field, prompting continuous research which results and implementation could benefit the general public in decades to come.
first_indexed 2025-11-15T00:05:12Z
format Article
id oai:generic.eprints.org:11131
institution Universiti Kebangasaan Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T00:05:12Z
publishDate 2017
publisher Penerbit Universiti Kebangsaan Malaysia
recordtype eprints
repository_type Digital Repository
spelling oai:generic.eprints.org:111312017-12-21T04:34:02Z http://journalarticle.ukm.my/11131/ Graphene for biomedical applications:a review Azrul Azlan Hamzah, Reena Sri Selvarajan, Burhanuddin Yeop Majlis, Since its discovery in 2004, graphene has enticed engineers and researchers from various fields to explore its possibilities to be incepted into various devices and applications. Graphene is deemed a ‘super’ material by researchers due to its extraordinary strength, extremely high surface-to-mass ratio and superconducting properties. Nonetheless, graphene has yet to find plausible footing as an electronics material. In biomedical field, graphene has proved useful in tissue engineering, drug delivery, cancer teraphy, as a component in power unit for biomedical implants and devices and as a vital component in biosensors. Graphene is used as scaffolding for tissue regeneration in stem cell tissue engineering, as active electrodes in supercapacitor for powering wearable and implantable biomedical devices and as detectors in biosensors. In tissue engineering, the extreme strength of monolayer graphene enables it to hold stem cell tissues as scaffold during in-vitro cell regeneration process. In MEMS supercapacitor, graphene’s extremely high surface-to-mass ratio enables it to be used as electrodes in order to increase the power unit’s energy and power densities. A small yet having high energy and power densities cell is needed to power often space constrainted biomedical devices. In FET biosensors, graphene acts as detector electrodes, owing to its superconductivity property. Graphene detector electrodes is capable of detecting target molecules at a concentration level as low as 1 pM, making it the most sensitive biosensor available today. Graphene continues to envisage unique and exciting applications for biomedical field, prompting continuous research which results and implementation could benefit the general public in decades to come. Penerbit Universiti Kebangsaan Malaysia 2017-07 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/11131/1/16%20Azrul%20Azlan.pdf Azrul Azlan Hamzah, and Reena Sri Selvarajan, and Burhanuddin Yeop Majlis, (2017) Graphene for biomedical applications:a review. Sains Malaysiana, 46 (7). pp. 1125-1139. ISSN 0126-6039 http://www.ukm.my/jsm/malay_journals/jilid46bil7_2017/KandunganJilid46Bil7_2017.html
spellingShingle Azrul Azlan Hamzah,
Reena Sri Selvarajan,
Burhanuddin Yeop Majlis,
Graphene for biomedical applications:a review
title Graphene for biomedical applications:a review
title_full Graphene for biomedical applications:a review
title_fullStr Graphene for biomedical applications:a review
title_full_unstemmed Graphene for biomedical applications:a review
title_short Graphene for biomedical applications:a review
title_sort graphene for biomedical applications:a review
url http://journalarticle.ukm.my/11131/
http://journalarticle.ukm.my/11131/
http://journalarticle.ukm.my/11131/1/16%20Azrul%20Azlan.pdf