Synthesis of silica-supported nanoiron for Cr(VI) removal: application of Box-Behnken Statistical Design (BBD)

This study aimed to optimize the condition of silica-supported nanoscale zero valent iron (NZVI/SiO2) synthesis by colloidal impregnation method. Box-Behnken design (BBD) was used as a tool to create and analyze the 17 synthesized conditions of NZVI/SiO2 samples. The independent variables included e...

Full description

Bibliographic Details
Main Authors: Praewpatra Archariyapanyakul, Bhuckchanya Pangkumhang, Pummarin Khamdahsag, Visanu Taboonchuy
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia 2017
Online Access:http://journalarticle.ukm.my/11044/
http://journalarticle.ukm.my/11044/1/19%20Praewpatra.pdf
_version_ 1848812592585244672
author Praewpatra Archariyapanyakul,
Bhuckchanya Pangkumhang,
Pummarin Khamdahsag,
Visanu Taboonchuy,
author_facet Praewpatra Archariyapanyakul,
Bhuckchanya Pangkumhang,
Pummarin Khamdahsag,
Visanu Taboonchuy,
author_sort Praewpatra Archariyapanyakul,
building UKM Institutional Repository
collection Online Access
description This study aimed to optimize the condition of silica-supported nanoscale zero valent iron (NZVI/SiO2) synthesis by colloidal impregnation method. Box-Behnken design (BBD) was used as a tool to create and analyze the 17 synthesized conditions of NZVI/SiO2 samples. The independent variables included ethanol concentration (0-100 vol%), amount of silica (0.025-0.125 g) and agitation speed (100-400 rpm). In addition, analysis of variance (ANOVA) for a response surface quadratic model was used to approximate statistical relationship of independent variables. The reducing performance of the synthesized NZVI/SiO2 was examined through removal of Cr(VI) contaminated in water. The optimum of NZVI/SiO2 synthesis was validated with 100 vol% of ethanol concentration, 0.075 g of silica amount, and 100 rpm of agitation speed. The materials were characterized using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), and nitrogen adsorption/desorption which showed the existence of NZVI phase, composition, and morphology. The Cr(VI) removal efficiency of the NZVI/SiO2 was tested further at the solution pH 4, 7 and 10 in comparison with that by pristine NZVI and silica-unsupported NZVI (NZVI + SiO2). Among the three materials, NZVI/SiO2 presented the highest Cr(VI) removal, especially at pH 7 and 10 with 98 and 94.41%, within 60 min. This was due to the adsorption of Cr(OH)3 and Fe(OH)3 precipitates over SiO2 resulting in availibilty of NZVI/SiO2’s active sites. The proposed mechanism of Cr(VI) removal by NZVI/SiO2 was also described.
first_indexed 2025-11-15T00:04:45Z
format Article
id oai:generic.eprints.org:11044
institution Universiti Kebangasaan Malaysia
institution_category Local University
language English
last_indexed 2025-11-15T00:04:45Z
publishDate 2017
publisher Penerbit Universiti Kebangsaan Malaysia
recordtype eprints
repository_type Digital Repository
spelling oai:generic.eprints.org:110442017-11-27T12:18:19Z http://journalarticle.ukm.my/11044/ Synthesis of silica-supported nanoiron for Cr(VI) removal: application of Box-Behnken Statistical Design (BBD) Praewpatra Archariyapanyakul, Bhuckchanya Pangkumhang, Pummarin Khamdahsag, Visanu Taboonchuy, This study aimed to optimize the condition of silica-supported nanoscale zero valent iron (NZVI/SiO2) synthesis by colloidal impregnation method. Box-Behnken design (BBD) was used as a tool to create and analyze the 17 synthesized conditions of NZVI/SiO2 samples. The independent variables included ethanol concentration (0-100 vol%), amount of silica (0.025-0.125 g) and agitation speed (100-400 rpm). In addition, analysis of variance (ANOVA) for a response surface quadratic model was used to approximate statistical relationship of independent variables. The reducing performance of the synthesized NZVI/SiO2 was examined through removal of Cr(VI) contaminated in water. The optimum of NZVI/SiO2 synthesis was validated with 100 vol% of ethanol concentration, 0.075 g of silica amount, and 100 rpm of agitation speed. The materials were characterized using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), and nitrogen adsorption/desorption which showed the existence of NZVI phase, composition, and morphology. The Cr(VI) removal efficiency of the NZVI/SiO2 was tested further at the solution pH 4, 7 and 10 in comparison with that by pristine NZVI and silica-unsupported NZVI (NZVI + SiO2). Among the three materials, NZVI/SiO2 presented the highest Cr(VI) removal, especially at pH 7 and 10 with 98 and 94.41%, within 60 min. This was due to the adsorption of Cr(OH)3 and Fe(OH)3 precipitates over SiO2 resulting in availibilty of NZVI/SiO2’s active sites. The proposed mechanism of Cr(VI) removal by NZVI/SiO2 was also described. Penerbit Universiti Kebangsaan Malaysia 2017-04 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/11044/1/19%20Praewpatra.pdf Praewpatra Archariyapanyakul, and Bhuckchanya Pangkumhang, and Pummarin Khamdahsag, and Visanu Taboonchuy, (2017) Synthesis of silica-supported nanoiron for Cr(VI) removal: application of Box-Behnken Statistical Design (BBD). Sains Malaysiana, 46 (4). pp. 655-665. ISSN 0126-6039 http://www.ukm.my/jsm/english_journals/vol46num4_2017/contentsVol46num4_2017.html
spellingShingle Praewpatra Archariyapanyakul,
Bhuckchanya Pangkumhang,
Pummarin Khamdahsag,
Visanu Taboonchuy,
Synthesis of silica-supported nanoiron for Cr(VI) removal: application of Box-Behnken Statistical Design (BBD)
title Synthesis of silica-supported nanoiron for Cr(VI) removal: application of Box-Behnken Statistical Design (BBD)
title_full Synthesis of silica-supported nanoiron for Cr(VI) removal: application of Box-Behnken Statistical Design (BBD)
title_fullStr Synthesis of silica-supported nanoiron for Cr(VI) removal: application of Box-Behnken Statistical Design (BBD)
title_full_unstemmed Synthesis of silica-supported nanoiron for Cr(VI) removal: application of Box-Behnken Statistical Design (BBD)
title_short Synthesis of silica-supported nanoiron for Cr(VI) removal: application of Box-Behnken Statistical Design (BBD)
title_sort synthesis of silica-supported nanoiron for cr(vi) removal: application of box-behnken statistical design (bbd)
url http://journalarticle.ukm.my/11044/
http://journalarticle.ukm.my/11044/
http://journalarticle.ukm.my/11044/1/19%20Praewpatra.pdf