Nonlinear breathing modes at a defect
Recent molecular dynamics (MD) simulations of Cubero et al (1999) of a DNA duplex containing the 'rogue' base difluorotoluene (F) in place of a thymine (T) base show that breathing events can occur on the nanosecond timescale, whereas breathing events in a normal DNA duplex take place o...
| Main Author: | |
|---|---|
| Format: | Article |
| Published: |
Royal Society
2004
|
| Subjects: | |
| Online Access: | https://eprints.nottingham.ac.uk/938/ |
| Summary: | Recent molecular dynamics (MD) simulations of Cubero et al (1999) of
a DNA duplex containing the 'rogue' base difluorotoluene (F) in place of a
thymine (T) base show that breathing events can occur on the nanosecond
timescale, whereas breathing events in a normal DNA duplex take place on the microsecond timescale.
The main aim of this paper is to analyse a nonlinear Klein-Gordon lattice
model of the DNA duplex including both nonlinear interactions between
opposing bases and a defect in the interaction at one lattice site;
each of which can cause localisation of energy.
Solutions for a breather mode either side of the defect are derived using
multiple-scales asymptotics and are pieced together across the defect to
form a solution which includes the effects of the nonlinearity and the defect.
We consider defects in the
inter-chain interactions and in the along chain interactions.
In most cases we find in-phase breather modes and/or out-of-phase
breather modes, with one case displaying a shifted mode. |
|---|