| Summary: | The kinetic sieving mechanism is a well-known continuum method for modelling granular size segregation phenomena, typically solved for steady-state chute flows.
In this thesis, we develop a model to include normal confining pressure dependence, time-dependence and evolving velocity profiles through the grain body. This enabled more sophisticated granular behaviours and feed-backs to be explored - in particular, those relevant to cyclic loading of soils through e.g. wind turbine foundations. An iterative expansion approach is proposed to self-expand the classic bi-disperse or tri-disperse segregation problem towards arbitrarily poly-disperse systems, with minimal change of input parameters and data structures.
Under pair-wise stress partition and segregation relationships, behaviour can be directly linked to size ratios. Simulations show the dependence on particle size distribution alongside the controlling non-dimensional parameters: inter-particle drag, diffusion rate and confining pressure.
The final goal of this project was to couple particle crushing with the validated poly-disperse segregation model. After exploring possible ways of incorporating breakage, solid volume fraction re-distribution was tested in a 10-population problem with clear feed-backs from the prescribed crushing.
|