Alkaloids from Alstonia scholaris and Ficus schwarzii

Alkaloids, which are the most studied secondary metabolites, are structurally diverse and well known for their biological activity. The aim of the present study is to perform phytochemical investigations on the alkaloidal composition of two selected plant species, namely, Ficus schwarzii (Moraceae)...

Full description

Bibliographic Details
Main Author: Krishnan, Premanand
Format: Thesis (University of Nottingham only)
Language:English
Published: 2022
Subjects:
Online Access:https://eprints.nottingham.ac.uk/69459/
_version_ 1848800566325542912
author Krishnan, Premanand
author_facet Krishnan, Premanand
author_sort Krishnan, Premanand
building Nottingham Research Data Repository
collection Online Access
description Alkaloids, which are the most studied secondary metabolites, are structurally diverse and well known for their biological activity. The aim of the present study is to perform phytochemical investigations on the alkaloidal composition of two selected plant species, namely, Ficus schwarzii (Moraceae) and Alstonia scholaris (Apocynaceae). (specimen from the West Coast of Peninsular Malaysia). The previously unexplored phytochemistry of F. schwarzii and the phytochemical variation of A. scholaris due to locality have motivated research into the two species collected from Peninsular Malaysia. Phytochemical investigation of the leaves of F. schwarzii yielded nine novel alkaloids, namely, schwarzinicines A−G (1−7), and schwarzificusines A and B (8 and 9). The schwarzinicine alkaloids represent the first examples of 1,4 diarylbutanoid−phenethylamine conjugates, while schwarzificusines A and B (8 and 9) represent a pair of new diastereomeric 1-phenyl-3-aminotetralins that are structurally related to the schwarzinicines alkaloids. The structures of alkaloids 1–9 were elucidated by detailed analysis of their HRMS and NMR data. Plausible biogenetic pathways that furnish the skeletons of the schwarzinicine and schwarzifiscusine alkaloids were proposed. Phytochemical investigation of the leaves, bark and flowers of A. scholaris cultivated on the West Coast of Peninsular Malaysia provided a total of 17 alkaloids, of which five are new, namely, alstoscholactine (10), alstolaxepine (11), N-formylyunnanensine (12), scholaphylline (13), and alstobrogaline (19). Alstoscholactine (10), alstolaxepine (11), and alstobrogaline (19) were established to contain novel ring systems. Alstoscholactine (10) represents a rearranged stemmadenine alkaloid with an unprecedented C-6-C-19 connectivity, while alstolaxepine (11) represents a 6,7-seco-angustilobine B-type alkaloid incorporating a rare γ-lactone-bridged oxepane ring system. On the other hand, alstobrogaline (19) is an unusual monoterpenoid indole alkaloid incorporating a third N atom, and possessing an aldimine as well as a nitrone function. N-Formylyunnanensine (12) is the N-formyl derivative of the known alkaloid yunnanensine, and it was isolated as a pair of unseparable E/Z-formamide rotamers. Scholaphylline (13) represents the first member of the secostemmadenine-secovallesamine-type bisindole alkaloid. The 12 known alkaloids obtained from Alstonia scholaris are 19,20-E-vallesamine (14), 19,20-Z-vallesamine (15), 19,20-E-vallesamine N-oxide (16), 6,7-secoangustilobine B (17), and 6,7-seco-19,20-epoxyangustilobine B (18), tetrahydroalstonine (20), picrinine (21), 16R-19,20-Z-isositsirikine (22), 16R-19,20-E-isositsirikine (23), scholaricine (24), N-demethylalstogustine N-oxide (25), and E/Z-vallesiachotamine (26).
first_indexed 2025-11-14T20:53:36Z
format Thesis (University of Nottingham only)
id nottingham-69459
institution University of Nottingham Malaysia Campus
institution_category Local University
language English
last_indexed 2025-11-14T20:53:36Z
publishDate 2022
recordtype eprints
repository_type Digital Repository
spelling nottingham-694592024-07-23T04:30:16Z https://eprints.nottingham.ac.uk/69459/ Alkaloids from Alstonia scholaris and Ficus schwarzii Krishnan, Premanand Alkaloids, which are the most studied secondary metabolites, are structurally diverse and well known for their biological activity. The aim of the present study is to perform phytochemical investigations on the alkaloidal composition of two selected plant species, namely, Ficus schwarzii (Moraceae) and Alstonia scholaris (Apocynaceae). (specimen from the West Coast of Peninsular Malaysia). The previously unexplored phytochemistry of F. schwarzii and the phytochemical variation of A. scholaris due to locality have motivated research into the two species collected from Peninsular Malaysia. Phytochemical investigation of the leaves of F. schwarzii yielded nine novel alkaloids, namely, schwarzinicines A−G (1−7), and schwarzificusines A and B (8 and 9). The schwarzinicine alkaloids represent the first examples of 1,4 diarylbutanoid−phenethylamine conjugates, while schwarzificusines A and B (8 and 9) represent a pair of new diastereomeric 1-phenyl-3-aminotetralins that are structurally related to the schwarzinicines alkaloids. The structures of alkaloids 1–9 were elucidated by detailed analysis of their HRMS and NMR data. Plausible biogenetic pathways that furnish the skeletons of the schwarzinicine and schwarzifiscusine alkaloids were proposed. Phytochemical investigation of the leaves, bark and flowers of A. scholaris cultivated on the West Coast of Peninsular Malaysia provided a total of 17 alkaloids, of which five are new, namely, alstoscholactine (10), alstolaxepine (11), N-formylyunnanensine (12), scholaphylline (13), and alstobrogaline (19). Alstoscholactine (10), alstolaxepine (11), and alstobrogaline (19) were established to contain novel ring systems. Alstoscholactine (10) represents a rearranged stemmadenine alkaloid with an unprecedented C-6-C-19 connectivity, while alstolaxepine (11) represents a 6,7-seco-angustilobine B-type alkaloid incorporating a rare γ-lactone-bridged oxepane ring system. On the other hand, alstobrogaline (19) is an unusual monoterpenoid indole alkaloid incorporating a third N atom, and possessing an aldimine as well as a nitrone function. N-Formylyunnanensine (12) is the N-formyl derivative of the known alkaloid yunnanensine, and it was isolated as a pair of unseparable E/Z-formamide rotamers. Scholaphylline (13) represents the first member of the secostemmadenine-secovallesamine-type bisindole alkaloid. The 12 known alkaloids obtained from Alstonia scholaris are 19,20-E-vallesamine (14), 19,20-Z-vallesamine (15), 19,20-E-vallesamine N-oxide (16), 6,7-secoangustilobine B (17), and 6,7-seco-19,20-epoxyangustilobine B (18), tetrahydroalstonine (20), picrinine (21), 16R-19,20-Z-isositsirikine (22), 16R-19,20-E-isositsirikine (23), scholaricine (24), N-demethylalstogustine N-oxide (25), and E/Z-vallesiachotamine (26). 2022-07-24 Thesis (University of Nottingham only) NonPeerReviewed application/pdf en cc_by https://eprints.nottingham.ac.uk/69459/1/Thesis_Premanand%20Krishnan%20%28014227%29.pdf Krishnan, Premanand (2022) Alkaloids from Alstonia scholaris and Ficus schwarzii. PhD thesis, University of Nottingham. alkaloids phytochemical investigation Ficus schwarzii (Moraceae) Alstonia scholaris (Apocynaceae)
spellingShingle alkaloids
phytochemical investigation
Ficus schwarzii (Moraceae)
Alstonia scholaris (Apocynaceae)
Krishnan, Premanand
Alkaloids from Alstonia scholaris and Ficus schwarzii
title Alkaloids from Alstonia scholaris and Ficus schwarzii
title_full Alkaloids from Alstonia scholaris and Ficus schwarzii
title_fullStr Alkaloids from Alstonia scholaris and Ficus schwarzii
title_full_unstemmed Alkaloids from Alstonia scholaris and Ficus schwarzii
title_short Alkaloids from Alstonia scholaris and Ficus schwarzii
title_sort alkaloids from alstonia scholaris and ficus schwarzii
topic alkaloids
phytochemical investigation
Ficus schwarzii (Moraceae)
Alstonia scholaris (Apocynaceae)
url https://eprints.nottingham.ac.uk/69459/