Topics in financial and computational mathematics

In this thesis, we consider two different aspects in financial option pricing. In the first part, we consider stochastic differential equations driven by general Lévy processes (SDEs) with finite and infinite activity and the re- lated, via the Feynman-Kac formula, Dirichlet problem for integro-part...

Full description

Bibliographic Details
Main Author: Maurer, Simon
Format: Thesis (University of Nottingham only)
Language:English
Published: 2021
Subjects:
Online Access:https://eprints.nottingham.ac.uk/66180/
_version_ 1848800306346852352
author Maurer, Simon
author_facet Maurer, Simon
author_sort Maurer, Simon
building Nottingham Research Data Repository
collection Online Access
description In this thesis, we consider two different aspects in financial option pricing. In the first part, we consider stochastic differential equations driven by general Lévy processes (SDEs) with finite and infinite activity and the re- lated, via the Feynman-Kac formula, Dirichlet problem for integro-partial differential equation (IPDE). We approximate the solution of IPDE using a numerical method for the SDEs. The method is based on three ingredients: (i) we approximate small jumps by a diffusion; (ii) we use restricted jump- adaptive time-stepping; and (iii) between the jumps we exploit a weak Euler approximation. We prove weak convergence of the considered algorithm and present an in-depth analysis of how its error and computational cost depend on the jump activity level. We present the results of a range of numerical experiments including application of the suggested numerical scheme in the context of Foreign Exchange (FX) options, where we present an example on barrier basket currency option pricing in a multi-dimensional setting. In the second part of the thesis, we suggest an intermediate currency approach that allows us to price options on all FX markets simultaneously under the same risk-neutral measure which ensures consistency of FX option prices across all markets. In particular, it is sufficient to calibrate a model to the volatility smile on the domestic market as, due to the consistency of pricing formulas, the model automatically reproduces the correct smile for the inverse pair (the foreign market). We first consider the case of two currencies and then the multi-currency setting. We illustrate the intermediate currency approach by applying it to the Heston and SABR stochastic volatility models, to the model in which exchange rates are described by an extended skewed normal distribution, and also to the model-free approach of option pricing.
first_indexed 2025-11-14T20:49:28Z
format Thesis (University of Nottingham only)
id nottingham-66180
institution University of Nottingham Malaysia Campus
institution_category Local University
language English
last_indexed 2025-11-14T20:49:28Z
publishDate 2021
recordtype eprints
repository_type Digital Repository
spelling nottingham-661802021-12-31T04:40:46Z https://eprints.nottingham.ac.uk/66180/ Topics in financial and computational mathematics Maurer, Simon In this thesis, we consider two different aspects in financial option pricing. In the first part, we consider stochastic differential equations driven by general Lévy processes (SDEs) with finite and infinite activity and the re- lated, via the Feynman-Kac formula, Dirichlet problem for integro-partial differential equation (IPDE). We approximate the solution of IPDE using a numerical method for the SDEs. The method is based on three ingredients: (i) we approximate small jumps by a diffusion; (ii) we use restricted jump- adaptive time-stepping; and (iii) between the jumps we exploit a weak Euler approximation. We prove weak convergence of the considered algorithm and present an in-depth analysis of how its error and computational cost depend on the jump activity level. We present the results of a range of numerical experiments including application of the suggested numerical scheme in the context of Foreign Exchange (FX) options, where we present an example on barrier basket currency option pricing in a multi-dimensional setting. In the second part of the thesis, we suggest an intermediate currency approach that allows us to price options on all FX markets simultaneously under the same risk-neutral measure which ensures consistency of FX option prices across all markets. In particular, it is sufficient to calibrate a model to the volatility smile on the domestic market as, due to the consistency of pricing formulas, the model automatically reproduces the correct smile for the inverse pair (the foreign market). We first consider the case of two currencies and then the multi-currency setting. We illustrate the intermediate currency approach by applying it to the Heston and SABR stochastic volatility models, to the model in which exchange rates are described by an extended skewed normal distribution, and also to the model-free approach of option pricing. 2021-12-31 Thesis (University of Nottingham only) NonPeerReviewed application/pdf en cc_by https://eprints.nottingham.ac.uk/66180/1/14289062_Simon_Maurer_PhD_v2.0.pdf Maurer, Simon (2021) Topics in financial and computational mathematics. PhD thesis, University of Nottingham. financial option pricing stochastic differential equations financial markets derivatives
spellingShingle financial option pricing
stochastic differential equations
financial markets
derivatives
Maurer, Simon
Topics in financial and computational mathematics
title Topics in financial and computational mathematics
title_full Topics in financial and computational mathematics
title_fullStr Topics in financial and computational mathematics
title_full_unstemmed Topics in financial and computational mathematics
title_short Topics in financial and computational mathematics
title_sort topics in financial and computational mathematics
topic financial option pricing
stochastic differential equations
financial markets
derivatives
url https://eprints.nottingham.ac.uk/66180/