A Recommender System based on Idiotypic Artificial Immune Networks
The immune system is a complex biological system with a highly distributed, adaptive and self-organising nature. This paper presents an Artificial Immune System (AIS) that exploits some of these characteristics and is applied to the task of film recommendation by Collaborative Filtering (CF). Natura...
| Main Authors: | , |
|---|---|
| Format: | Article |
| Published: |
2005
|
| Online Access: | https://eprints.nottingham.ac.uk/660/ |
| _version_ | 1848790457195167744 |
|---|---|
| author | Cayzer, Steve Aickelin, Uwe |
| author_facet | Cayzer, Steve Aickelin, Uwe |
| author_sort | Cayzer, Steve |
| building | Nottingham Research Data Repository |
| collection | Online Access |
| description | The immune system is a complex biological system with a highly distributed, adaptive and self-organising nature. This paper presents an Artificial Immune System (AIS) that exploits some of these characteristics and is applied to the task of film recommendation by Collaborative Filtering (CF). Natural evolution and in particular the immune system have not been designed for classical optimisation. However, for this problem, we are not interested in finding a single optimum. Rather we intend to identify a sub-set of good matches on which recommendations can be based. It is our hypothesis that an AIS built on two central aspects of the biological immune system will be an ideal candidate to achieve this: Antigen-antibody interaction for matching and idiotypic antibody-antibody interaction for diversity. Computational results are presented in support of this conjecture and compared to those found by other CF techniques. |
| first_indexed | 2025-11-14T18:12:55Z |
| format | Article |
| id | nottingham-660 |
| institution | University of Nottingham Malaysia Campus |
| institution_category | Local University |
| last_indexed | 2025-11-14T18:12:55Z |
| publishDate | 2005 |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | nottingham-6602020-05-04T20:30:44Z https://eprints.nottingham.ac.uk/660/ A Recommender System based on Idiotypic Artificial Immune Networks Cayzer, Steve Aickelin, Uwe The immune system is a complex biological system with a highly distributed, adaptive and self-organising nature. This paper presents an Artificial Immune System (AIS) that exploits some of these characteristics and is applied to the task of film recommendation by Collaborative Filtering (CF). Natural evolution and in particular the immune system have not been designed for classical optimisation. However, for this problem, we are not interested in finding a single optimum. Rather we intend to identify a sub-set of good matches on which recommendations can be based. It is our hypothesis that an AIS built on two central aspects of the biological immune system will be an ideal candidate to achieve this: Antigen-antibody interaction for matching and idiotypic antibody-antibody interaction for diversity. Computational results are presented in support of this conjecture and compared to those found by other CF techniques. 2005 Article PeerReviewed Cayzer, Steve and Aickelin, Uwe (2005) A Recommender System based on Idiotypic Artificial Immune Networks. Journal of Mathematical Modelling and Algorithms, 4(2), . pp. 181-198. http://www.springerlink.com/content/n6071h5240681011/fulltext.pdf doi:10.1007/s10852-004-5336-7 doi:10.1007/s10852-004-5336-7 |
| spellingShingle | Cayzer, Steve Aickelin, Uwe A Recommender System based on Idiotypic Artificial Immune Networks |
| title | A Recommender System based on Idiotypic Artificial Immune Networks |
| title_full | A Recommender System based on Idiotypic Artificial Immune Networks |
| title_fullStr | A Recommender System based on Idiotypic Artificial Immune Networks |
| title_full_unstemmed | A Recommender System based on Idiotypic Artificial Immune Networks |
| title_short | A Recommender System based on Idiotypic Artificial Immune Networks |
| title_sort | recommender system based on idiotypic artificial immune networks |
| url | https://eprints.nottingham.ac.uk/660/ https://eprints.nottingham.ac.uk/660/ https://eprints.nottingham.ac.uk/660/ |