Exploring personalised autonomous vehicles to influence user trust
Trust is a major determinant of acceptance of an autonomous vehicle (AV), and a lack of appropriate trust could prevent drivers and society in general from taking advantage of such technology. This paper makes a new attempt to explore the effects of personalised AVs as a novel approach to the cognit...
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Springer
2020
|
| Subjects: | |
| Online Access: | https://eprints.nottingham.ac.uk/63451/ |
| _version_ | 1848800020885667840 |
|---|---|
| author | Sun, Xu Li, Jingpeng Tang, Pinyan Zhou, Siyuan Peng, Xiangjun Li, Hao Nan Wang, Qingfeng |
| author_facet | Sun, Xu Li, Jingpeng Tang, Pinyan Zhou, Siyuan Peng, Xiangjun Li, Hao Nan Wang, Qingfeng |
| author_sort | Sun, Xu |
| building | Nottingham Research Data Repository |
| collection | Online Access |
| description | Trust is a major determinant of acceptance of an autonomous vehicle (AV), and a lack of appropriate trust could prevent drivers and society in general from taking advantage of such technology. This paper makes a new attempt to explore the effects of personalised AVs as a novel approach to the cognitive underpinnings of drivers’ trust in AVs. The personalised AV system is able to identify the driving behaviours of users and thus adapt the driving style of the AV accordingly. A prototype of a personalised AV was designed and evaluated in a lab-based experimental study of 36 human drivers, which investigated the impact of the personalised AV on user trust when compared with manual human driving and non-personalised AVs. The findings show that a personalised AV appears to be significantly more reliable through accepting and understanding each driver’s behaviour, which could thereby increase a user’s willingness to trust the system. Furthermore, a personalised AV brings a sense of familiarity by making the system more recognisable and easier for users to estimate the quality of the automated system. Personalisation parameters were also explored and discussed to support the design of AV systems to be more socially acceptable and trustworthy. |
| first_indexed | 2025-11-14T20:44:56Z |
| format | Article |
| id | nottingham-63451 |
| institution | University of Nottingham Malaysia Campus |
| institution_category | Local University |
| language | English |
| last_indexed | 2025-11-14T20:44:56Z |
| publishDate | 2020 |
| publisher | Springer |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | nottingham-634512020-10-12T03:39:46Z https://eprints.nottingham.ac.uk/63451/ Exploring personalised autonomous vehicles to influence user trust Sun, Xu Li, Jingpeng Tang, Pinyan Zhou, Siyuan Peng, Xiangjun Li, Hao Nan Wang, Qingfeng Trust is a major determinant of acceptance of an autonomous vehicle (AV), and a lack of appropriate trust could prevent drivers and society in general from taking advantage of such technology. This paper makes a new attempt to explore the effects of personalised AVs as a novel approach to the cognitive underpinnings of drivers’ trust in AVs. The personalised AV system is able to identify the driving behaviours of users and thus adapt the driving style of the AV accordingly. A prototype of a personalised AV was designed and evaluated in a lab-based experimental study of 36 human drivers, which investigated the impact of the personalised AV on user trust when compared with manual human driving and non-personalised AVs. The findings show that a personalised AV appears to be significantly more reliable through accepting and understanding each driver’s behaviour, which could thereby increase a user’s willingness to trust the system. Furthermore, a personalised AV brings a sense of familiarity by making the system more recognisable and easier for users to estimate the quality of the automated system. Personalisation parameters were also explored and discussed to support the design of AV systems to be more socially acceptable and trustworthy. Springer 2020-09-01 Article PeerReviewed application/pdf en cc_by https://eprints.nottingham.ac.uk/63451/1/Exploring%20Personalised%20Autonomous%20Vehicles%20to%20Influence%20User%20Trust.pdf Sun, Xu, Li, Jingpeng, Tang, Pinyan, Zhou, Siyuan, Peng, Xiangjun, Li, Hao Nan and Wang, Qingfeng (2020) Exploring personalised autonomous vehicles to influence user trust. Cognitive Computation . ISSN 1866-9956 Autonomous vehicle; Driving characteristics; Driving style; Personalisation; Trust; User experience; User study; Human factors http://dx.doi.org/10.1007/s12559-020-09757-x doi:10.1007/s12559-020-09757-x doi:10.1007/s12559-020-09757-x |
| spellingShingle | Autonomous vehicle; Driving characteristics; Driving style; Personalisation; Trust; User experience; User study; Human factors Sun, Xu Li, Jingpeng Tang, Pinyan Zhou, Siyuan Peng, Xiangjun Li, Hao Nan Wang, Qingfeng Exploring personalised autonomous vehicles to influence user trust |
| title | Exploring personalised autonomous vehicles to influence user trust |
| title_full | Exploring personalised autonomous vehicles to influence user trust |
| title_fullStr | Exploring personalised autonomous vehicles to influence user trust |
| title_full_unstemmed | Exploring personalised autonomous vehicles to influence user trust |
| title_short | Exploring personalised autonomous vehicles to influence user trust |
| title_sort | exploring personalised autonomous vehicles to influence user trust |
| topic | Autonomous vehicle; Driving characteristics; Driving style; Personalisation; Trust; User experience; User study; Human factors |
| url | https://eprints.nottingham.ac.uk/63451/ https://eprints.nottingham.ac.uk/63451/ https://eprints.nottingham.ac.uk/63451/ |