Investigations into the Synthetic Modifications of Terpenes for the Synthesis of Renewable Polyesters

This thesis details the synthesis of four novel terpene-derived monomers via the derivatisation of a-pinene and limonene (two of the most abundant terpenes). The monomers have been used in the synthesis of sustainable polyesters, which all contain a unique cyclohexane ring in their backbone. The...

Full description

Bibliographic Details
Main Author: Thomsett, Megan
Format: Thesis (University of Nottingham only)
Language:English
Published: 2019
Subjects:
Online Access:https://eprints.nottingham.ac.uk/56309/
Description
Summary:This thesis details the synthesis of four novel terpene-derived monomers via the derivatisation of a-pinene and limonene (two of the most abundant terpenes). The monomers have been used in the synthesis of sustainable polyesters, which all contain a unique cyclohexane ring in their backbone. The functionalisation of limonene has enabled the synthesis of two renewably-sourced monomers for the formation of terpene derived polyesters. Three methods for the synthesis of a novel hydroxy-acid are reported and their green credentials scrutinised through comparison of their sustainability-metrics. Stepgrowth homo-polymerisation of the hydroxy-acid is demonstrated to yield a low molecular weight novel polyester with 100% of its carbon content originating from the terpene starting material. The corresponding limonene diol is shown to act as a comonomer with a renewable diacid. The resultant polyesters display impressive Mns of up to 30 kDa with Tgs between -6 and 24 oC. The degradation of these materials were shown to allow recyclability of the diol monomer. a-Pinene was used for the synthesis of two polyols, which served as comonomers with a renewable diacid, enabling the synthesis of two novel polyesters with high Tgs. The corresponding enantiomers of the a-pinene derived polymers were blended to form stereocomplexes, leading to improved thermal properties of the polyester.