On the packing and crushing of granular materials

This paper is a study of the dependence of the volume of voids in a granular material on the particle size distribution. It has previously been proposed that the volume of voids is proportional to the volume of the smallest particles. In a particle size distribution which is progressively becoming w...

Full description

Bibliographic Details
Main Authors: de Bono, John P., McDowell, Glenn R.
Format: Article
Language:English
Published: Elsevier 2018
Online Access:https://eprints.nottingham.ac.uk/53465/
Description
Summary:This paper is a study of the dependence of the volume of voids in a granular material on the particle size distribution. It has previously been proposed that the volume of voids is proportional to the volume of the smallest particles. In a particle size distribution which is progressively becoming wider (e.g. as occurs due to crushing during the compression of sand), the smallest size of particle decreases, yet there are only ever a few of these particles out of many thousands or millions. This paper attempts to identify which particles govern the overall density of a granular material, and a new definition of the ‘smallest particles’ is proposed. These particles are shown to govern the void space in a range of simulations of spherical and non-spherical crushable particles. The theory also applies to idealised Apollonian sphere packings.