Experimental and numerical investigation of the uplift capacity of plate anchors in geocell-reinforced sand

Plate anchors are frequently used to provide resistance against uplift forces. This paper describes the reinforcing effects of a geocell-reinforced soil layer on uplift behavior of anchor plates. The uplift tests were conducted in a test pit at near full-scale on anchor plates with widths between 15...

Full description

Bibliographic Details
Main Authors: Rahimi, M., Moghaddas Tafreshi, S.N., Leshchinsky, B., Dawson, A.R.
Format: Article
Published: Elsevier 2018
Subjects:
Online Access:https://eprints.nottingham.ac.uk/53161/
_version_ 1848798890793369600
author Rahimi, M.
Moghaddas Tafreshi, S.N.
Leshchinsky, B.
Dawson, A.R.
author_facet Rahimi, M.
Moghaddas Tafreshi, S.N.
Leshchinsky, B.
Dawson, A.R.
author_sort Rahimi, M.
building Nottingham Research Data Repository
collection Online Access
description Plate anchors are frequently used to provide resistance against uplift forces. This paper describes the reinforcing effects of a geocell-reinforced soil layer on uplift behavior of anchor plates. The uplift tests were conducted in a test pit at near full-scale on anchor plates with widths between 150 and 300 mm with embedment depths of 1.5–3 times the anchor width for both unreinforced and geocell-reinforced backfill. A single geocell layer with pocket size 110 mm × 110 mm and height 100 mm, fabricated from non-perforated and nonwoven geotextile, was used. The results show that the peak and residual uplift capacities of anchor models were highest when the geocell layer over the anchor was used, but with increasing anchor size and embedment depth, the benefit of the geocell reinforcement deceases. Peak loads between 130% and 155% of unreinforced conditions were observed when geocell reinforcement was present. Residual loading increased from 75% to 225% that of the unreinforced scenario. The reinforced anchor system could undergo larger upward displacements before peak loading occurred. These improvements may be attributed to the geocell reinforcement distributing stress to a wider area than the unreinforced case during uplift. The breakout factor increases with embedment depth and decreased with increasing anchor width for both unreinforced and reinforced conditions, the latter yielding larger breakout factors. Calibrated numerical modelling demonstrated favorable agreement with experimental observations, providing insight into detailed behavior of the system. For example, surface heave decreased by over 80% when geocell was present because of a much more efficient stress distribution imparted by the presence of the geocell layer.
first_indexed 2025-11-14T20:26:58Z
format Article
id nottingham-53161
institution University of Nottingham Malaysia Campus
institution_category Local University
last_indexed 2025-11-14T20:26:58Z
publishDate 2018
publisher Elsevier
recordtype eprints
repository_type Digital Repository
spelling nottingham-531612020-05-04T19:50:11Z https://eprints.nottingham.ac.uk/53161/ Experimental and numerical investigation of the uplift capacity of plate anchors in geocell-reinforced sand Rahimi, M. Moghaddas Tafreshi, S.N. Leshchinsky, B. Dawson, A.R. Plate anchors are frequently used to provide resistance against uplift forces. This paper describes the reinforcing effects of a geocell-reinforced soil layer on uplift behavior of anchor plates. The uplift tests were conducted in a test pit at near full-scale on anchor plates with widths between 150 and 300 mm with embedment depths of 1.5–3 times the anchor width for both unreinforced and geocell-reinforced backfill. A single geocell layer with pocket size 110 mm × 110 mm and height 100 mm, fabricated from non-perforated and nonwoven geotextile, was used. The results show that the peak and residual uplift capacities of anchor models were highest when the geocell layer over the anchor was used, but with increasing anchor size and embedment depth, the benefit of the geocell reinforcement deceases. Peak loads between 130% and 155% of unreinforced conditions were observed when geocell reinforcement was present. Residual loading increased from 75% to 225% that of the unreinforced scenario. The reinforced anchor system could undergo larger upward displacements before peak loading occurred. These improvements may be attributed to the geocell reinforcement distributing stress to a wider area than the unreinforced case during uplift. The breakout factor increases with embedment depth and decreased with increasing anchor width for both unreinforced and reinforced conditions, the latter yielding larger breakout factors. Calibrated numerical modelling demonstrated favorable agreement with experimental observations, providing insight into detailed behavior of the system. For example, surface heave decreased by over 80% when geocell was present because of a much more efficient stress distribution imparted by the presence of the geocell layer. Elsevier 2018-12-01 Article PeerReviewed Rahimi, M., Moghaddas Tafreshi, S.N., Leshchinsky, B. and Dawson, A.R. (2018) Experimental and numerical investigation of the uplift capacity of plate anchors in geocell-reinforced sand. Geotextiles and Geomembranes, 46 (6). pp. 801-816. ISSN 0266-1144 Geosynthetics Plate anchor Geocell layer Uplift load Upward displacements Numerical analysis https://www.sciencedirect.com/science/article/pii/S0266114418300712?via%3Dihub doi:10.1016/j.geotexmem.2018.07.010 doi:10.1016/j.geotexmem.2018.07.010
spellingShingle Geosynthetics
Plate anchor
Geocell layer
Uplift load
Upward displacements
Numerical analysis
Rahimi, M.
Moghaddas Tafreshi, S.N.
Leshchinsky, B.
Dawson, A.R.
Experimental and numerical investigation of the uplift capacity of plate anchors in geocell-reinforced sand
title Experimental and numerical investigation of the uplift capacity of plate anchors in geocell-reinforced sand
title_full Experimental and numerical investigation of the uplift capacity of plate anchors in geocell-reinforced sand
title_fullStr Experimental and numerical investigation of the uplift capacity of plate anchors in geocell-reinforced sand
title_full_unstemmed Experimental and numerical investigation of the uplift capacity of plate anchors in geocell-reinforced sand
title_short Experimental and numerical investigation of the uplift capacity of plate anchors in geocell-reinforced sand
title_sort experimental and numerical investigation of the uplift capacity of plate anchors in geocell-reinforced sand
topic Geosynthetics
Plate anchor
Geocell layer
Uplift load
Upward displacements
Numerical analysis
url https://eprints.nottingham.ac.uk/53161/
https://eprints.nottingham.ac.uk/53161/
https://eprints.nottingham.ac.uk/53161/