Reversible adsorption and confinement of nitrogen dioxide within a robust porous metal-organic framework

Nitrogen dioxide (NO2) is a major air pollutant causing significant environmental and health problems. We report reversible adsorption of NO2 in a robust metal–organic framework. Under ambient conditions, MFM-300(Al) exhibits a reversible NO2 isotherm uptake of 14.1 mmol g−1, and, more importantly,...

Full description

Bibliographic Details
Main Authors: Han, Xue, Godfrey, Harry G.W., Briggs, Lydia, Davies, Andrew J., Cheng, Yongqiang, Daemen, Luke L., Sheveleva, Alena M., Tuna, Floriana, McInnes, Eric J.L., Sun, Junliang, Drathen, Christina, George, Michael W., Ramirez-Cuesta, Anibal J., Thomas, K. Mark, Schröder, Martin, Yang, Sihai
Format: Article
Published: Nature Publishing Group 2018
Online Access:https://eprints.nottingham.ac.uk/53087/
_version_ 1848798873999376384
author Han, Xue
Godfrey, Harry G.W.
Briggs, Lydia
Davies, Andrew J.
Cheng, Yongqiang
Daemen, Luke L.
Sheveleva, Alena M.
Tuna, Floriana
McInnes, Eric J.L.
Sun, Junliang
Drathen, Christina
George, Michael W.
Ramirez-Cuesta, Anibal J.
Thomas, K. Mark
Schröder, Martin
Yang, Sihai
author_facet Han, Xue
Godfrey, Harry G.W.
Briggs, Lydia
Davies, Andrew J.
Cheng, Yongqiang
Daemen, Luke L.
Sheveleva, Alena M.
Tuna, Floriana
McInnes, Eric J.L.
Sun, Junliang
Drathen, Christina
George, Michael W.
Ramirez-Cuesta, Anibal J.
Thomas, K. Mark
Schröder, Martin
Yang, Sihai
author_sort Han, Xue
building Nottingham Research Data Repository
collection Online Access
description Nitrogen dioxide (NO2) is a major air pollutant causing significant environmental and health problems. We report reversible adsorption of NO2 in a robust metal–organic framework. Under ambient conditions, MFM-300(Al) exhibits a reversible NO2 isotherm uptake of 14.1 mmol g−1, and, more importantly, exceptional selective removal of low-concentration NO2 (5,000 to <1 ppm) from gas mixtures. Complementary experiments reveal five types of supramolecular interaction that cooperatively bind both NO2 and N2O4 molecules within MFM-300(Al). We find that the in situ equilibrium 2NO2 ↔ N2O4 within the pores is pressure-independent, whereas ex situ this equilibrium is an exemplary pressure-dependent first-order process. The coexistence of helical monomer–dimer chains of NO2 in MFM-300(Al) could provide a foundation for the fundamental understanding of the chemical properties of guest molecules within porous hosts. This work may pave the way for the development of future capture and conversion technologies.
first_indexed 2025-11-14T20:26:42Z
format Article
id nottingham-53087
institution University of Nottingham Malaysia Campus
institution_category Local University
last_indexed 2025-11-14T20:26:42Z
publishDate 2018
publisher Nature Publishing Group
recordtype eprints
repository_type Digital Repository
spelling nottingham-530872024-08-15T15:29:33Z https://eprints.nottingham.ac.uk/53087/ Reversible adsorption and confinement of nitrogen dioxide within a robust porous metal-organic framework Han, Xue Godfrey, Harry G.W. Briggs, Lydia Davies, Andrew J. Cheng, Yongqiang Daemen, Luke L. Sheveleva, Alena M. Tuna, Floriana McInnes, Eric J.L. Sun, Junliang Drathen, Christina George, Michael W. Ramirez-Cuesta, Anibal J. Thomas, K. Mark Schröder, Martin Yang, Sihai Nitrogen dioxide (NO2) is a major air pollutant causing significant environmental and health problems. We report reversible adsorption of NO2 in a robust metal–organic framework. Under ambient conditions, MFM-300(Al) exhibits a reversible NO2 isotherm uptake of 14.1 mmol g−1, and, more importantly, exceptional selective removal of low-concentration NO2 (5,000 to <1 ppm) from gas mixtures. Complementary experiments reveal five types of supramolecular interaction that cooperatively bind both NO2 and N2O4 molecules within MFM-300(Al). We find that the in situ equilibrium 2NO2 ↔ N2O4 within the pores is pressure-independent, whereas ex situ this equilibrium is an exemplary pressure-dependent first-order process. The coexistence of helical monomer–dimer chains of NO2 in MFM-300(Al) could provide a foundation for the fundamental understanding of the chemical properties of guest molecules within porous hosts. This work may pave the way for the development of future capture and conversion technologies. Nature Publishing Group 2018-06-11 Article PeerReviewed Han, Xue, Godfrey, Harry G.W., Briggs, Lydia, Davies, Andrew J., Cheng, Yongqiang, Daemen, Luke L., Sheveleva, Alena M., Tuna, Floriana, McInnes, Eric J.L., Sun, Junliang, Drathen, Christina, George, Michael W., Ramirez-Cuesta, Anibal J., Thomas, K. Mark, Schröder, Martin and Yang, Sihai (2018) Reversible adsorption and confinement of nitrogen dioxide within a robust porous metal-organic framework. Nature Materials . ISSN 1476-4660 https://www.nature.com/articles/s41563-018-0104-7#author-information doi:10.1038/s41563-018-0104-7 doi:10.1038/s41563-018-0104-7
spellingShingle Han, Xue
Godfrey, Harry G.W.
Briggs, Lydia
Davies, Andrew J.
Cheng, Yongqiang
Daemen, Luke L.
Sheveleva, Alena M.
Tuna, Floriana
McInnes, Eric J.L.
Sun, Junliang
Drathen, Christina
George, Michael W.
Ramirez-Cuesta, Anibal J.
Thomas, K. Mark
Schröder, Martin
Yang, Sihai
Reversible adsorption and confinement of nitrogen dioxide within a robust porous metal-organic framework
title Reversible adsorption and confinement of nitrogen dioxide within a robust porous metal-organic framework
title_full Reversible adsorption and confinement of nitrogen dioxide within a robust porous metal-organic framework
title_fullStr Reversible adsorption and confinement of nitrogen dioxide within a robust porous metal-organic framework
title_full_unstemmed Reversible adsorption and confinement of nitrogen dioxide within a robust porous metal-organic framework
title_short Reversible adsorption and confinement of nitrogen dioxide within a robust porous metal-organic framework
title_sort reversible adsorption and confinement of nitrogen dioxide within a robust porous metal-organic framework
url https://eprints.nottingham.ac.uk/53087/
https://eprints.nottingham.ac.uk/53087/
https://eprints.nottingham.ac.uk/53087/