| Summary: | Fuzzy logic has been widely used to model human reasoning thanks to its inherent capability of handling uncertainty. In particular, the introduction of Type-2 fuzzy sets added the possibility of expressing uncertainty even on the definition of the membership functions. Type-2 sets, however, don’t pose any restrictions on the continuity or convexity of their embedded sets while these properties may be desirable in certain contexts. To overcome this problem, Constrained Type-2 fuzzy sets have been proposed. In this paper, we focus on Interval Constrained Type-2 sets to see how their unique structure can be exploited to build a new inference process. This will set some ground work for future developments, such as the design of a new defuzzification process for Constrained Type-2 fuzzy systems.
|