Manganese-enhanced magnetic resonance imaging depicts brain activity in models of acute and chronic pain: a new window to study experimental spontaneous pain?

Application of functional imaging techniques to animal models is vital to understand pain mechanisms, but is often confounded by the need to limit movement artefacts with anaesthesia, and a focus on evoked responses rather than clinically relevant spontaneous pain and related hyperalgesia. The aim o...

Full description

Bibliographic Details
Main Authors: Devonshire, Ian M., Burston, James, Xu, Luting, Lillywhite, A., Prior, M.J., Watson, David J.G., Greenspon, C.M., Iwabuchi, Sarina J., Auer, Dorothee P., Chapman, Victoria
Format: Article
Published: Elsevier 2017
Subjects:
Online Access:https://eprints.nottingham.ac.uk/51958/
_version_ 1848798613438726144
author Devonshire, Ian M.
Burston, James
Xu, Luting
Lillywhite, A.
Prior, M.J.
Watson, David J.G.
Greenspon, C.M.
Iwabuchi, Sarina J.
Auer, Dorothee P.
Chapman, Victoria
author_facet Devonshire, Ian M.
Burston, James
Xu, Luting
Lillywhite, A.
Prior, M.J.
Watson, David J.G.
Greenspon, C.M.
Iwabuchi, Sarina J.
Auer, Dorothee P.
Chapman, Victoria
author_sort Devonshire, Ian M.
building Nottingham Research Data Repository
collection Online Access
description Application of functional imaging techniques to animal models is vital to understand pain mechanisms, but is often confounded by the need to limit movement artefacts with anaesthesia, and a focus on evoked responses rather than clinically relevant spontaneous pain and related hyperalgesia. The aim of the present study was to investigate the potential of manganese-enhanced magnetic resonance imaging (MEMRI) to measure neural responses during on-going pain that underpins hyperalgesia in pre-clinical models of nociception. As a proof of concept that MEMRI is sensitive to the neural activity of spontaneous, intermittent behaviour, we studied a separate positive control group undergoing a voluntary running wheel experiment. In the pain models, pain behaviour (weight bearing asymmetry and hindpaw withdrawal thresholds (PWTs)) was measured at baseline and following either intra-articular injection of nerve growth factor (NGF, 10 µg/50 µl; acute pain model, n=4 rats per group), or the chondrocyte toxin monosodium iodoacetate (MIA, 1 mg/50 µl; chronic model, n=8 rats per group), or control injection. Separate groups of rats underwent a voluntary wheel running protocol (n=8 rats per group). Rats were administered with paramagnetic ion Mn2+ as soluble MnCl2 over seven days (subcutaneous osmotic pump) to allow cumulative activity-dependent neural accumulation in the models of pain, or over a period of running. T1-weighted MR imaging at 7 T was performed under isoflurane anaesthesia using a receive-only rat head coil in combination with a 72 mm volume coil for excitation. The pain models resulted in weight bearing asymmetry (NGF: 20.0 ± 5.2%, MIA: 15 ± 3%), and a reduction in PWT in the MIA model (8.3 ± 1.5 g) on the final day of assessment before undergoing MR imaging. Voxel-wise and region-based analysis of MEMRI data did not identify group differences in T1 signal. However, MnCl2 accumulation in the VTA, right Ce amygdala, and left cingulate was negatively correlated with pain responses (greater differences in weight bearing), similarly MnCl2 accumulation was reduced in the VTA in line with hyperalgesia (lower PWTs), which suggests reduced regional activation as a result of the intensity and duration of pain experienced during the 7 days of MnCl2 exposure. Motor cortex T1-weighted signal increase was associated with the distance ran in the wheel running study, while no between group difference was seen. Our data suggest that on-going pain related signal changes identified using MEMRI offers a new window to study the neural underpinnings of spontaneous pain in rats.
first_indexed 2025-11-14T20:22:33Z
format Article
id nottingham-51958
institution University of Nottingham Malaysia Campus
institution_category Local University
last_indexed 2025-11-14T20:22:33Z
publishDate 2017
publisher Elsevier
recordtype eprints
repository_type Digital Repository
spelling nottingham-519582020-05-04T19:00:54Z https://eprints.nottingham.ac.uk/51958/ Manganese-enhanced magnetic resonance imaging depicts brain activity in models of acute and chronic pain: a new window to study experimental spontaneous pain? Devonshire, Ian M. Burston, James Xu, Luting Lillywhite, A. Prior, M.J. Watson, David J.G. Greenspon, C.M. Iwabuchi, Sarina J. Auer, Dorothee P. Chapman, Victoria Application of functional imaging techniques to animal models is vital to understand pain mechanisms, but is often confounded by the need to limit movement artefacts with anaesthesia, and a focus on evoked responses rather than clinically relevant spontaneous pain and related hyperalgesia. The aim of the present study was to investigate the potential of manganese-enhanced magnetic resonance imaging (MEMRI) to measure neural responses during on-going pain that underpins hyperalgesia in pre-clinical models of nociception. As a proof of concept that MEMRI is sensitive to the neural activity of spontaneous, intermittent behaviour, we studied a separate positive control group undergoing a voluntary running wheel experiment. In the pain models, pain behaviour (weight bearing asymmetry and hindpaw withdrawal thresholds (PWTs)) was measured at baseline and following either intra-articular injection of nerve growth factor (NGF, 10 µg/50 µl; acute pain model, n=4 rats per group), or the chondrocyte toxin monosodium iodoacetate (MIA, 1 mg/50 µl; chronic model, n=8 rats per group), or control injection. Separate groups of rats underwent a voluntary wheel running protocol (n=8 rats per group). Rats were administered with paramagnetic ion Mn2+ as soluble MnCl2 over seven days (subcutaneous osmotic pump) to allow cumulative activity-dependent neural accumulation in the models of pain, or over a period of running. T1-weighted MR imaging at 7 T was performed under isoflurane anaesthesia using a receive-only rat head coil in combination with a 72 mm volume coil for excitation. The pain models resulted in weight bearing asymmetry (NGF: 20.0 ± 5.2%, MIA: 15 ± 3%), and a reduction in PWT in the MIA model (8.3 ± 1.5 g) on the final day of assessment before undergoing MR imaging. Voxel-wise and region-based analysis of MEMRI data did not identify group differences in T1 signal. However, MnCl2 accumulation in the VTA, right Ce amygdala, and left cingulate was negatively correlated with pain responses (greater differences in weight bearing), similarly MnCl2 accumulation was reduced in the VTA in line with hyperalgesia (lower PWTs), which suggests reduced regional activation as a result of the intensity and duration of pain experienced during the 7 days of MnCl2 exposure. Motor cortex T1-weighted signal increase was associated with the distance ran in the wheel running study, while no between group difference was seen. Our data suggest that on-going pain related signal changes identified using MEMRI offers a new window to study the neural underpinnings of spontaneous pain in rats. Elsevier 2017-08-15 Article PeerReviewed Devonshire, Ian M., Burston, James, Xu, Luting, Lillywhite, A., Prior, M.J., Watson, David J.G., Greenspon, C.M., Iwabuchi, Sarina J., Auer, Dorothee P. and Chapman, Victoria (2017) Manganese-enhanced magnetic resonance imaging depicts brain activity in models of acute and chronic pain: a new window to study experimental spontaneous pain? NeuroImage, 157 . pp. 500-510. ISSN 1095-9572 Nociception; fMRI; Manganese; On-going pain; Osteoarthritis https://www.sciencedirect.com/science/article/pii/S1053811917305074?via%3Dihub doi:10.1016/j.neuroimage.2017.06.034 doi:10.1016/j.neuroimage.2017.06.034
spellingShingle Nociception; fMRI; Manganese; On-going pain; Osteoarthritis
Devonshire, Ian M.
Burston, James
Xu, Luting
Lillywhite, A.
Prior, M.J.
Watson, David J.G.
Greenspon, C.M.
Iwabuchi, Sarina J.
Auer, Dorothee P.
Chapman, Victoria
Manganese-enhanced magnetic resonance imaging depicts brain activity in models of acute and chronic pain: a new window to study experimental spontaneous pain?
title Manganese-enhanced magnetic resonance imaging depicts brain activity in models of acute and chronic pain: a new window to study experimental spontaneous pain?
title_full Manganese-enhanced magnetic resonance imaging depicts brain activity in models of acute and chronic pain: a new window to study experimental spontaneous pain?
title_fullStr Manganese-enhanced magnetic resonance imaging depicts brain activity in models of acute and chronic pain: a new window to study experimental spontaneous pain?
title_full_unstemmed Manganese-enhanced magnetic resonance imaging depicts brain activity in models of acute and chronic pain: a new window to study experimental spontaneous pain?
title_short Manganese-enhanced magnetic resonance imaging depicts brain activity in models of acute and chronic pain: a new window to study experimental spontaneous pain?
title_sort manganese-enhanced magnetic resonance imaging depicts brain activity in models of acute and chronic pain: a new window to study experimental spontaneous pain?
topic Nociception; fMRI; Manganese; On-going pain; Osteoarthritis
url https://eprints.nottingham.ac.uk/51958/
https://eprints.nottingham.ac.uk/51958/
https://eprints.nottingham.ac.uk/51958/