Gate-defined quantum confinement in InSe-based van der Waals heterostructures

Indium selenide, a post-transition metal chalcogenide, is a novel two-dimensional (2D) semiconductor with interesting electronic properties. Its tunable band gap and high electron mobility have already attracted considerable research interest. Here we demonstrate strong quantum confinement and manip...

Full description

Bibliographic Details
Main Authors: Hamer, Matthew James, Tovari, Endre, Zhu, Mengjian, Thompson, Michael, Mayorov, Alexander, Prance, Jonathon, Lee, Yongjin, Haley, Richard P., Kudrynskyi, Zakhar R., Patanè, Amalia, Terry, Daniel, Kovalyuk, Zakhar D., Ensslin, Klaus, Kretinin, Andrey V., Geim, Andre, Gorbachev, R.V.
Format: Article
Published: American Chemical Society 2018
Subjects:
Online Access:https://eprints.nottingham.ac.uk/51829/
_version_ 1848798583947526144
author Hamer, Matthew James
Tovari, Endre
Zhu, Mengjian
Thompson, Michael
Mayorov, Alexander
Prance, Jonathon
Lee, Yongjin
Haley, Richard P.
Kudrynskyi, Zakhar R.
Patanè, Amalia
Terry, Daniel
Kovalyuk, Zakhar D.
Ensslin, Klaus
Kretinin, Andrey V.
Geim, Andre
Gorbachev, R.V.
author_facet Hamer, Matthew James
Tovari, Endre
Zhu, Mengjian
Thompson, Michael
Mayorov, Alexander
Prance, Jonathon
Lee, Yongjin
Haley, Richard P.
Kudrynskyi, Zakhar R.
Patanè, Amalia
Terry, Daniel
Kovalyuk, Zakhar D.
Ensslin, Klaus
Kretinin, Andrey V.
Geim, Andre
Gorbachev, R.V.
author_sort Hamer, Matthew James
building Nottingham Research Data Repository
collection Online Access
description Indium selenide, a post-transition metal chalcogenide, is a novel two-dimensional (2D) semiconductor with interesting electronic properties. Its tunable band gap and high electron mobility have already attracted considerable research interest. Here we demonstrate strong quantum confinement and manipulation of single electrons in devices made from few-layer crystals of InSe using electrostatic gating. We report on gate-controlled quantum dots in the Coulomb blockade regime as well as one-dimensional quantization in point contacts, revealing multiple plateaus. The work represents an important milestone in the development of quality devices based on 2D materials and makes InSe a prime candidate for relevant electronic and optoelectronic applications.
first_indexed 2025-11-14T20:22:05Z
format Article
id nottingham-51829
institution University of Nottingham Malaysia Campus
institution_category Local University
last_indexed 2025-11-14T20:22:05Z
publishDate 2018
publisher American Chemical Society
recordtype eprints
repository_type Digital Repository
spelling nottingham-518292020-05-04T19:36:39Z https://eprints.nottingham.ac.uk/51829/ Gate-defined quantum confinement in InSe-based van der Waals heterostructures Hamer, Matthew James Tovari, Endre Zhu, Mengjian Thompson, Michael Mayorov, Alexander Prance, Jonathon Lee, Yongjin Haley, Richard P. Kudrynskyi, Zakhar R. Patanè, Amalia Terry, Daniel Kovalyuk, Zakhar D. Ensslin, Klaus Kretinin, Andrey V. Geim, Andre Gorbachev, R.V. Indium selenide, a post-transition metal chalcogenide, is a novel two-dimensional (2D) semiconductor with interesting electronic properties. Its tunable band gap and high electron mobility have already attracted considerable research interest. Here we demonstrate strong quantum confinement and manipulation of single electrons in devices made from few-layer crystals of InSe using electrostatic gating. We report on gate-controlled quantum dots in the Coulomb blockade regime as well as one-dimensional quantization in point contacts, revealing multiple plateaus. The work represents an important milestone in the development of quality devices based on 2D materials and makes InSe a prime candidate for relevant electronic and optoelectronic applications. American Chemical Society 2018-05-15 Article PeerReviewed Hamer, Matthew James, Tovari, Endre, Zhu, Mengjian, Thompson, Michael, Mayorov, Alexander, Prance, Jonathon, Lee, Yongjin, Haley, Richard P., Kudrynskyi, Zakhar R., Patanè, Amalia, Terry, Daniel, Kovalyuk, Zakhar D., Ensslin, Klaus, Kretinin, Andrey V., Geim, Andre and Gorbachev, R.V. (2018) Gate-defined quantum confinement in InSe-based van der Waals heterostructures. Nano Letters . ISSN 1530-6992 Two-Dimensional Materials Quantum Dots Quantum Point Contacts Charge Quantization Indium Selenide Electronic Devices https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b01376 doi:10.1021/acs.nanolett.8b01376 doi:10.1021/acs.nanolett.8b01376
spellingShingle Two-Dimensional Materials
Quantum Dots
Quantum Point Contacts
Charge Quantization
Indium Selenide
Electronic Devices
Hamer, Matthew James
Tovari, Endre
Zhu, Mengjian
Thompson, Michael
Mayorov, Alexander
Prance, Jonathon
Lee, Yongjin
Haley, Richard P.
Kudrynskyi, Zakhar R.
Patanè, Amalia
Terry, Daniel
Kovalyuk, Zakhar D.
Ensslin, Klaus
Kretinin, Andrey V.
Geim, Andre
Gorbachev, R.V.
Gate-defined quantum confinement in InSe-based van der Waals heterostructures
title Gate-defined quantum confinement in InSe-based van der Waals heterostructures
title_full Gate-defined quantum confinement in InSe-based van der Waals heterostructures
title_fullStr Gate-defined quantum confinement in InSe-based van der Waals heterostructures
title_full_unstemmed Gate-defined quantum confinement in InSe-based van der Waals heterostructures
title_short Gate-defined quantum confinement in InSe-based van der Waals heterostructures
title_sort gate-defined quantum confinement in inse-based van der waals heterostructures
topic Two-Dimensional Materials
Quantum Dots
Quantum Point Contacts
Charge Quantization
Indium Selenide
Electronic Devices
url https://eprints.nottingham.ac.uk/51829/
https://eprints.nottingham.ac.uk/51829/
https://eprints.nottingham.ac.uk/51829/