| Summary: | Accelerometer-based technologies could be useful in providing objective measures of canine ambulation, but most are either not tailored to the idiosyncrasies of canine gait, or, use un-validated or closed source approaches. The aim of this paper was to validate algorithms which could be applied to accelerometer data for i) counting the number of steps and ii) distance travelled by a dog.
To count steps, an approach based on partitioning acceleration was used. This was applied to accelerometer data from 13 dogs which were walked a set distance and filmed. Each footfall captured on video was annotated. In a second experiment, an approach based on signal features was used to estimate distance travelled. This was applied to accelerometer data from 10 dogs with osteoarthritis during normal walks with their owners where GPS (Global Positioning System) was also captured. Pearson’s correlations and Bland Altman statistics were used to compare i) the number of steps measured on video footage and predicted by the algorithm and ii) the distance travelled estimated by GPS and predicted by the algorithm.
|