Effect of loading history on airway smooth muscle cell-matrix adhesions

Integrin-mediated adhesions between airway smooth muscle (ASM) cells and the extracellular matrix (ECM) regulate how contractile forces generated within the cell are transmitted to its external environment. Environmental cues are known to influence the formation, size and survival of cell-matrix adh...

Full description

Bibliographic Details
Main Authors: Irons, Linda, Owen, Markus R., O'Dea, Reuben D., Brook, Bindi S.
Format: Article
Published: Biophysical Society 2018
Online Access:https://eprints.nottingham.ac.uk/51367/
_version_ 1848798481179738112
author Irons, Linda
Owen, Markus R.
O'Dea, Reuben D.
Brook, Bindi S.
author_facet Irons, Linda
Owen, Markus R.
O'Dea, Reuben D.
Brook, Bindi S.
author_sort Irons, Linda
building Nottingham Research Data Repository
collection Online Access
description Integrin-mediated adhesions between airway smooth muscle (ASM) cells and the extracellular matrix (ECM) regulate how contractile forces generated within the cell are transmitted to its external environment. Environmental cues are known to influence the formation, size and survival of cell-matrix adhesions, but it is not yet known how they are affected by dynamic fluctuations associated with tidal breathing in the intact airway. Here we develop two closely-related theoretical models to study adhesion dynamics in response to oscillatory loading of the ECM, representing the dynamic environment of ASM cells in vivo. Using a discrete stochastic-elastic model, we simulate individual integrin binding and rupture events and observe two stable regimes in which either bond formation or bond rupture dominate, depending on the amplitude of the oscillatory loading. These regimes have either a high or low fraction of persistent adhesions, which could affect the level of strain transmission between contracted ASM cells and the airway tissue. For intermediate loading we observe a region of bistability and hysteresis due to shared loading between existing bonds; the level of adhesion depends on the loading history. These findings are replicated in a related continuum model, which we use to investigate the effect of perturbations mimicking deep inspirations (DIs). Due to the bistability, a DI applied to the high adhesion state could either induce a permanent switch to a lower adhesion state or allow a return of the system to the high adhesion state. Transitions between states are further influenced by the frequency of oscillations, cytoskeletal or ECM stiffnesses and binding affinities, which modify the magnitudes of the stable adhesion states as well as the region of bistability. These findings could explain (in part) the transient bronchodilatory effect of a DI observed in asthmatics compared to a more sustained effect in normal subjects.
first_indexed 2025-11-14T20:20:27Z
format Article
id nottingham-51367
institution University of Nottingham Malaysia Campus
institution_category Local University
last_indexed 2025-11-14T20:20:27Z
publishDate 2018
publisher Biophysical Society
recordtype eprints
repository_type Digital Repository
spelling nottingham-513672020-05-04T19:39:31Z https://eprints.nottingham.ac.uk/51367/ Effect of loading history on airway smooth muscle cell-matrix adhesions Irons, Linda Owen, Markus R. O'Dea, Reuben D. Brook, Bindi S. Integrin-mediated adhesions between airway smooth muscle (ASM) cells and the extracellular matrix (ECM) regulate how contractile forces generated within the cell are transmitted to its external environment. Environmental cues are known to influence the formation, size and survival of cell-matrix adhesions, but it is not yet known how they are affected by dynamic fluctuations associated with tidal breathing in the intact airway. Here we develop two closely-related theoretical models to study adhesion dynamics in response to oscillatory loading of the ECM, representing the dynamic environment of ASM cells in vivo. Using a discrete stochastic-elastic model, we simulate individual integrin binding and rupture events and observe two stable regimes in which either bond formation or bond rupture dominate, depending on the amplitude of the oscillatory loading. These regimes have either a high or low fraction of persistent adhesions, which could affect the level of strain transmission between contracted ASM cells and the airway tissue. For intermediate loading we observe a region of bistability and hysteresis due to shared loading between existing bonds; the level of adhesion depends on the loading history. These findings are replicated in a related continuum model, which we use to investigate the effect of perturbations mimicking deep inspirations (DIs). Due to the bistability, a DI applied to the high adhesion state could either induce a permanent switch to a lower adhesion state or allow a return of the system to the high adhesion state. Transitions between states are further influenced by the frequency of oscillations, cytoskeletal or ECM stiffnesses and binding affinities, which modify the magnitudes of the stable adhesion states as well as the region of bistability. These findings could explain (in part) the transient bronchodilatory effect of a DI observed in asthmatics compared to a more sustained effect in normal subjects. Biophysical Society 2018-06-05 Article PeerReviewed Irons, Linda, Owen, Markus R., O'Dea, Reuben D. and Brook, Bindi S. (2018) Effect of loading history on airway smooth muscle cell-matrix adhesions. Biophysical Journal, 114 (11). pp. 2679-2690. ISSN 0006-3495 https://www.cell.com/biophysj/fulltext/S0006-3495(18)30520-4 doi:10.1016/j.bpj.2018.04.026 doi:10.1016/j.bpj.2018.04.026
spellingShingle Irons, Linda
Owen, Markus R.
O'Dea, Reuben D.
Brook, Bindi S.
Effect of loading history on airway smooth muscle cell-matrix adhesions
title Effect of loading history on airway smooth muscle cell-matrix adhesions
title_full Effect of loading history on airway smooth muscle cell-matrix adhesions
title_fullStr Effect of loading history on airway smooth muscle cell-matrix adhesions
title_full_unstemmed Effect of loading history on airway smooth muscle cell-matrix adhesions
title_short Effect of loading history on airway smooth muscle cell-matrix adhesions
title_sort effect of loading history on airway smooth muscle cell-matrix adhesions
url https://eprints.nottingham.ac.uk/51367/
https://eprints.nottingham.ac.uk/51367/
https://eprints.nottingham.ac.uk/51367/