Flux balance techniques for modelling metabolic networks and comparison with kinetic models

A variety of techniques used to model metabolic networks are examined, both kinetic (ODE) models and flux balance (FB) models. These models are applied to a case study network describing CO and CO2 metabolism in Clostridium autoethanogenum, bacteria which can produce both ethanol and butanediol from...

Full description

Bibliographic Details
Main Author: Coleman, Matthew
Format: Thesis (University of Nottingham only)
Language:English
Published: 2018
Subjects:
Online Access:https://eprints.nottingham.ac.uk/50999/
_version_ 1848798388389150720
author Coleman, Matthew
author_facet Coleman, Matthew
author_sort Coleman, Matthew
building Nottingham Research Data Repository
collection Online Access
description A variety of techniques used to model metabolic networks are examined, both kinetic (ODE) models and flux balance (FB) models. These models are applied to a case study network describing CO and CO2 metabolism in Clostridium autoethanogenum, bacteria which can produce both ethanol and butanediol from a source of carbon monoxide. ODE and FB methods are also used to model a variety of simpler networks. By comparing the results from these simpler networks, the strengths and weaknesses of each examined method are highlighted, and ultimately, insight is gained into the conclusions that can be drawn from each model. ODE models have commonly been used to model metabolism in both in vivo and in vitro contexts, allowing the dynamic behaviour of wildtype bacteria to be examined, as well as that of mutants. An ODE model is formed for the C. autoethanogenum network. By exploring a range of parameter schemes, the possible long timescale behaviours of the model are fully determined. The model is able to exhibit both steady states, and also states in which metabolite concentrations grow indefinitely in time. By considering the scalings of these concentrations in the long timescale, six different non-steady behaviours are categorised and one steady. For a small range of parameter schemes, the model is able to exhibit both steady and unsteady behaviours in the long timescale, depending on initial conditions. FB methods are also applied to the same network. First flux balance analysis (FBA) is used to model the network in steady state. By imposing a range of constraints on the model, limits on levels of flux in the network that are required for a steady-state are found. In particular, boundaries on the ratio of inputs into the network are calculated, outside of which steady states cannot exist. Comparing the steady state regions predicted by FBA and our ODE model, it is found that the FBA model predicts a wider range of conditions leading to steady state. FBA is only able to observe a network in steady state, so an extension of FBA, known as dynamic flux balance analysis (dFBA), is used to examine non-steady-state behaviours. dFBA predicts similar long term non-steady behaviour to the ODE models, with states in which concentrations of some metabolites are able to grow indefinitely in time. These dFBA states do not precisely match those found by the ODE model, and states that cannot be observed in the ODE model are also found, suggesting that other ODE models for the same network could exhibit different long timescale behaviours. The examples considered clarify the strengths and weaknesses of each approach and the nature of insight into metabolic behaviour each provides.
first_indexed 2025-11-14T20:18:59Z
format Thesis (University of Nottingham only)
id nottingham-50999
institution University of Nottingham Malaysia Campus
institution_category Local University
language English
last_indexed 2025-11-14T20:18:59Z
publishDate 2018
recordtype eprints
repository_type Digital Repository
spelling nottingham-509992025-02-28T14:04:18Z https://eprints.nottingham.ac.uk/50999/ Flux balance techniques for modelling metabolic networks and comparison with kinetic models Coleman, Matthew A variety of techniques used to model metabolic networks are examined, both kinetic (ODE) models and flux balance (FB) models. These models are applied to a case study network describing CO and CO2 metabolism in Clostridium autoethanogenum, bacteria which can produce both ethanol and butanediol from a source of carbon monoxide. ODE and FB methods are also used to model a variety of simpler networks. By comparing the results from these simpler networks, the strengths and weaknesses of each examined method are highlighted, and ultimately, insight is gained into the conclusions that can be drawn from each model. ODE models have commonly been used to model metabolism in both in vivo and in vitro contexts, allowing the dynamic behaviour of wildtype bacteria to be examined, as well as that of mutants. An ODE model is formed for the C. autoethanogenum network. By exploring a range of parameter schemes, the possible long timescale behaviours of the model are fully determined. The model is able to exhibit both steady states, and also states in which metabolite concentrations grow indefinitely in time. By considering the scalings of these concentrations in the long timescale, six different non-steady behaviours are categorised and one steady. For a small range of parameter schemes, the model is able to exhibit both steady and unsteady behaviours in the long timescale, depending on initial conditions. FB methods are also applied to the same network. First flux balance analysis (FBA) is used to model the network in steady state. By imposing a range of constraints on the model, limits on levels of flux in the network that are required for a steady-state are found. In particular, boundaries on the ratio of inputs into the network are calculated, outside of which steady states cannot exist. Comparing the steady state regions predicted by FBA and our ODE model, it is found that the FBA model predicts a wider range of conditions leading to steady state. FBA is only able to observe a network in steady state, so an extension of FBA, known as dynamic flux balance analysis (dFBA), is used to examine non-steady-state behaviours. dFBA predicts similar long term non-steady behaviour to the ODE models, with states in which concentrations of some metabolites are able to grow indefinitely in time. These dFBA states do not precisely match those found by the ODE model, and states that cannot be observed in the ODE model are also found, suggesting that other ODE models for the same network could exhibit different long timescale behaviours. The examples considered clarify the strengths and weaknesses of each approach and the nature of insight into metabolic behaviour each provides. 2018-07-19 Thesis (University of Nottingham only) NonPeerReviewed application/pdf en arr https://eprints.nottingham.ac.uk/50999/1/M%20Coleman%20revised%20thesis.pdf Coleman, Matthew (2018) Flux balance techniques for modelling metabolic networks and comparison with kinetic models. PhD thesis, University of Nottingham. metabolic engineering mathematical modelling
spellingShingle metabolic engineering mathematical modelling
Coleman, Matthew
Flux balance techniques for modelling metabolic networks and comparison with kinetic models
title Flux balance techniques for modelling metabolic networks and comparison with kinetic models
title_full Flux balance techniques for modelling metabolic networks and comparison with kinetic models
title_fullStr Flux balance techniques for modelling metabolic networks and comparison with kinetic models
title_full_unstemmed Flux balance techniques for modelling metabolic networks and comparison with kinetic models
title_short Flux balance techniques for modelling metabolic networks and comparison with kinetic models
title_sort flux balance techniques for modelling metabolic networks and comparison with kinetic models
topic metabolic engineering mathematical modelling
url https://eprints.nottingham.ac.uk/50999/