Design optimization of a short-term duty electrical machine for extreme environment
This paper presents design optimisation of a short term duty electrical machine for extreme environments of high temperature and high altitudes. For such extreme environmental conditions of above 80⁰C and altitudes of 30km, thermal loading limits are a critical consideration in machines, especially...
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Institute of Electrical and Electronics Engineers
2017
|
| Subjects: | |
| Online Access: | https://eprints.nottingham.ac.uk/50390/ |
| _version_ | 1848798239680102400 |
|---|---|
| author | Arumugam, Puvaneswaran Amankwah, Emmanuel K. Walker, Adam Gerada, C. |
| author_facet | Arumugam, Puvaneswaran Amankwah, Emmanuel K. Walker, Adam Gerada, C. |
| author_sort | Arumugam, Puvaneswaran |
| building | Nottingham Research Data Repository |
| collection | Online Access |
| description | This paper presents design optimisation of a short term duty electrical machine for extreme environments of high temperature and high altitudes. For such extreme environmental conditions of above 80⁰C and altitudes of 30km, thermal loading limits are a critical consideration in machines, especially if high power density and high efficiency are to be achieved. The influence of different material on the performance of such machines is investigated. Also the effect of different slot and pole combinations are studied for machines used for such extreme operating conditions but with short duty. In the research, A Non-dominated Sorting Genetic Algorithm (NSGAII) considering an analytical electromagnetic model, structural and thermal model together with Finite Element (FE) methods are used to optimise the design of the machine for such environments achieving high efficiencies and high power density with relatively minimal computational time. The adopted thermal model is then validated through experiments and then implemented within the Genetic Algorithm (GA). It is shown that, generally, the designs are thermally limited where the pole numbers are limited by volt-amps drawn from the converter. The design consisting of a high slot number allows for improving the current loading and thus, significant weight reduction can be achieved. |
| first_indexed | 2025-11-14T20:16:37Z |
| format | Article |
| id | nottingham-50390 |
| institution | University of Nottingham Malaysia Campus |
| institution_category | Local University |
| language | English |
| last_indexed | 2025-11-14T20:16:37Z |
| publishDate | 2017 |
| publisher | Institute of Electrical and Electronics Engineers |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | nottingham-503902018-03-13T10:01:22Z https://eprints.nottingham.ac.uk/50390/ Design optimization of a short-term duty electrical machine for extreme environment Arumugam, Puvaneswaran Amankwah, Emmanuel K. Walker, Adam Gerada, C. This paper presents design optimisation of a short term duty electrical machine for extreme environments of high temperature and high altitudes. For such extreme environmental conditions of above 80⁰C and altitudes of 30km, thermal loading limits are a critical consideration in machines, especially if high power density and high efficiency are to be achieved. The influence of different material on the performance of such machines is investigated. Also the effect of different slot and pole combinations are studied for machines used for such extreme operating conditions but with short duty. In the research, A Non-dominated Sorting Genetic Algorithm (NSGAII) considering an analytical electromagnetic model, structural and thermal model together with Finite Element (FE) methods are used to optimise the design of the machine for such environments achieving high efficiencies and high power density with relatively minimal computational time. The adopted thermal model is then validated through experiments and then implemented within the Genetic Algorithm (GA). It is shown that, generally, the designs are thermally limited where the pole numbers are limited by volt-amps drawn from the converter. The design consisting of a high slot number allows for improving the current loading and thus, significant weight reduction can be achieved. Institute of Electrical and Electronics Engineers 2017-06-02 Article PeerReviewed application/pdf en https://eprints.nottingham.ac.uk/50390/1/Design%20Optimisation%20of%20a%20Short%20Term%20Duty%20Electrical%20Machine%20for%20Extreme%20Environment.pdf Arumugam, Puvaneswaran, Amankwah, Emmanuel K., Walker, Adam and Gerada, C. (2017) Design optimization of a short-term duty electrical machine for extreme environment. IEEE Transactions on Industrial Electronics, 64 (12). pp. 9784-9794. ISSN 1557-9948 Extreme Environment optimisation genetic algorithm short-duty thermal management http://ieeexplore.ieee.org/document/7938395/ doi:10.1109/TIE.2017.2711555 doi:10.1109/TIE.2017.2711555 |
| spellingShingle | Extreme Environment optimisation genetic algorithm short-duty thermal management Arumugam, Puvaneswaran Amankwah, Emmanuel K. Walker, Adam Gerada, C. Design optimization of a short-term duty electrical machine for extreme environment |
| title | Design optimization of a short-term duty electrical machine for extreme environment |
| title_full | Design optimization of a short-term duty electrical machine for extreme environment |
| title_fullStr | Design optimization of a short-term duty electrical machine for extreme environment |
| title_full_unstemmed | Design optimization of a short-term duty electrical machine for extreme environment |
| title_short | Design optimization of a short-term duty electrical machine for extreme environment |
| title_sort | design optimization of a short-term duty electrical machine for extreme environment |
| topic | Extreme Environment optimisation genetic algorithm short-duty thermal management |
| url | https://eprints.nottingham.ac.uk/50390/ https://eprints.nottingham.ac.uk/50390/ https://eprints.nottingham.ac.uk/50390/ |