Virtual sensors for active noise control in acoustic–structural coupled enclosures using structural sensing: robust virtual sensor design

The work was aimed to develop a robust virtual sensing design methodology for sensing and active control applications of vibro-acoustic systems. The proposed virtual sensor was designed to estimate a broadband acoustic interior sound pressure using structural sensors, with robustness against certain...

Full description

Bibliographic Details
Main Authors: Halim, Dunant, Cheng, Li, Su, Zhongqing
Format: Article
Published: Acoustical Society of America 2011
Online Access:https://eprints.nottingham.ac.uk/50244/
Description
Summary:The work was aimed to develop a robust virtual sensing design methodology for sensing and active control applications of vibro-acoustic systems. The proposed virtual sensor was designed to estimate a broadband acoustic interior sound pressure using structural sensors, with robustness against certain dynamic uncertainties occurring in an acoustic–structural coupled enclosure. A convex combination of Kalman sub-filters was used during the design, accommodating different sets of perturbed dynamic model of the vibro-acoustic enclosure. A minimax optimization problem was set up to determine an optimal convex combination of Kalman sub-filters, ensuring an optimal worst-case vir- tual sensing performance. The virtual sensing and active noise control performance was numerically investigated on a rectangular panel-cavity system. It was demonstrated that the proposed virtual sen- sor could accurately estimate the interior sound pressure, particularly the one dominated by cavity- controlled modes, by using a structural sensor. With such a virtual sensing technique, effective active noise control performance was also obtained even for the worst-case dynamics.