High heterotrophic CO2 emissions from a Malaysian oil palm plantations during dry-season

Abstract Tropical peatlands are currently being rapidly cleared and drained for the establishment of oil palm plantations, which threatens their globally significant carbon sequestration capacity. Large-scale land conversion of tropical peatlands is important in the context of greenhouse gas emis...

Full description

Bibliographic Details
Main Authors: Matysek, Magdalena, Evers, Stephanie, Samuel, Marshall Kana, Sjogersten, Sofie
Format: Article
Published: Springer 2017
Online Access:https://eprints.nottingham.ac.uk/49761/
_version_ 1848801185307295744
author Matysek, Magdalena
Evers, Stephanie
Samuel, Marshall Kana
Sjogersten, Sofie
author_facet Matysek, Magdalena
Evers, Stephanie
Samuel, Marshall Kana
Sjogersten, Sofie
author_sort Matysek, Magdalena
building Nottingham Research Data Repository
collection Online Access
description Abstract Tropical peatlands are currently being rapidly cleared and drained for the establishment of oil palm plantations, which threatens their globally significant carbon sequestration capacity. Large-scale land conversion of tropical peatlands is important in the context of greenhouse gas emission factors and sustainable land management. At present, quantification of carbon dioxide losses from tropical peatlands is limited by our understanding of the relative contribution of heterotrophic and autotrophic respiration to net peat surface CO2 emissions. In this study we separated heterotrophic and autotrophic components of peat CO2 losses from two oil palm plantations (one established in ‘2000’ and the other in 1978, then replanted in ‘2006’) using chamber-based emissions sampling along a transect from the rooting to non-rooting zones on a peatland in Selangor, Peninsular Malaysia over the course of 3 months (June–August, 2014). Collar CO2 measurements were compared with soil temperature and moisture at site and also accompanied by depth profiles assessing peat C and bulk density. The soil respiration decreased exponentially with distance from the palm trunks with the sharpest decline found for the plantation with the younger palms with overall fluxes of 1341 and 988 mg CO2 m−2 h−1, respectively, at the 2000 and 2006 plantations, respectively. The mean heterotrophic flux was 909 ± SE 136 and 716 ± SE 201 mg m−2 h−1 at the 2000 and 2006 plantations, respectively. Autotrophic emissions adjacent to the palm trunks were 845 ± SE 135 and 1558 ± SE 341 mg m−2 h−1 at the 2000 and 2006 plantations, respectively. Heterotrophic CO2 flux was positively related to peat soil moisture, but not temperature. Total peat C stocks were 60 kg m−2 (down to 1 m depth) and did not vary among plantations of different ages but SOC concentrations declined significantly with depth at both plantations but the decline was sharper in the second generation 2006 plantation. The CO2 flux values reported in this study suggest a potential for very high carbon (C) loss from drained tropical peats during the dry season. This is particularly concerning given that more intense dry periods related to climate change are predicted for SE Asia. Taken together, this study highlights the need for careful management of tropical peatlands, and the vulnerability of their carbon storage capability under conditions of drainage.
first_indexed 2025-11-14T20:13:57Z
format Article
id nottingham-49761
institution University of Nottingham Malaysia Campus
institution_category Local University
last_indexed 2025-11-14T21:03:26Z
publishDate 2017
publisher Springer
recordtype eprints
repository_type Digital Repository
spelling nottingham-497612025-09-08T13:17:04Z https://eprints.nottingham.ac.uk/49761/ High heterotrophic CO2 emissions from a Malaysian oil palm plantations during dry-season Matysek, Magdalena Evers, Stephanie Samuel, Marshall Kana Sjogersten, Sofie Abstract Tropical peatlands are currently being rapidly cleared and drained for the establishment of oil palm plantations, which threatens their globally significant carbon sequestration capacity. Large-scale land conversion of tropical peatlands is important in the context of greenhouse gas emission factors and sustainable land management. At present, quantification of carbon dioxide losses from tropical peatlands is limited by our understanding of the relative contribution of heterotrophic and autotrophic respiration to net peat surface CO2 emissions. In this study we separated heterotrophic and autotrophic components of peat CO2 losses from two oil palm plantations (one established in ‘2000’ and the other in 1978, then replanted in ‘2006’) using chamber-based emissions sampling along a transect from the rooting to non-rooting zones on a peatland in Selangor, Peninsular Malaysia over the course of 3 months (June–August, 2014). Collar CO2 measurements were compared with soil temperature and moisture at site and also accompanied by depth profiles assessing peat C and bulk density. The soil respiration decreased exponentially with distance from the palm trunks with the sharpest decline found for the plantation with the younger palms with overall fluxes of 1341 and 988 mg CO2 m−2 h−1, respectively, at the 2000 and 2006 plantations, respectively. The mean heterotrophic flux was 909 ± SE 136 and 716 ± SE 201 mg m−2 h−1 at the 2000 and 2006 plantations, respectively. Autotrophic emissions adjacent to the palm trunks were 845 ± SE 135 and 1558 ± SE 341 mg m−2 h−1 at the 2000 and 2006 plantations, respectively. Heterotrophic CO2 flux was positively related to peat soil moisture, but not temperature. Total peat C stocks were 60 kg m−2 (down to 1 m depth) and did not vary among plantations of different ages but SOC concentrations declined significantly with depth at both plantations but the decline was sharper in the second generation 2006 plantation. The CO2 flux values reported in this study suggest a potential for very high carbon (C) loss from drained tropical peats during the dry season. This is particularly concerning given that more intense dry periods related to climate change are predicted for SE Asia. Taken together, this study highlights the need for careful management of tropical peatlands, and the vulnerability of their carbon storage capability under conditions of drainage. Springer 2017-12-01 Article PeerReviewed Matysek, Magdalena, Evers, Stephanie, Samuel, Marshall Kana and Sjogersten, Sofie (2017) High heterotrophic CO2 emissions from a Malaysian oil palm plantations during dry-season. Wetlands Ecology and Management . ISSN 0923-4861 https://link.springer.com/article/10.1007/s11273-017-9583-6 doi:10.1007/s11273-017-9583-6 doi:10.1007/s11273-017-9583-6
spellingShingle Matysek, Magdalena
Evers, Stephanie
Samuel, Marshall Kana
Sjogersten, Sofie
High heterotrophic CO2 emissions from a Malaysian oil palm plantations during dry-season
title High heterotrophic CO2 emissions from a Malaysian oil palm plantations during dry-season
title_full High heterotrophic CO2 emissions from a Malaysian oil palm plantations during dry-season
title_fullStr High heterotrophic CO2 emissions from a Malaysian oil palm plantations during dry-season
title_full_unstemmed High heterotrophic CO2 emissions from a Malaysian oil palm plantations during dry-season
title_short High heterotrophic CO2 emissions from a Malaysian oil palm plantations during dry-season
title_sort high heterotrophic co2 emissions from a malaysian oil palm plantations during dry-season
url https://eprints.nottingham.ac.uk/49761/
https://eprints.nottingham.ac.uk/49761/
https://eprints.nottingham.ac.uk/49761/