Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction

The fabrication of complex three-dimensional gold-containing nanocomposite structures by simultaneous two-photon polymerisation and photoreduction is demonstrated. Increased salt delivers reduced feature sizes down to line widths as small as 78nm, a level of structural intricacy that represents a si...

Full description

Bibliographic Details
Main Authors: Hu, Qin, Sun, Xue-Zhong, Parmenter, Christopher D.J., Fay, Michael W., Smith, Emily F., Rance, Graham A., He, Yinfeng, Zhang, Fan, Liu, Yaan, Irvine, Derek, Tuck, Christopher, Hague, Richard J.M., Wildman, Ricky D.
Format: Article
Published: Nature Publishing Group 2017
Online Access:https://eprints.nottingham.ac.uk/49144/
Description
Summary:The fabrication of complex three-dimensional gold-containing nanocomposite structures by simultaneous two-photon polymerisation and photoreduction is demonstrated. Increased salt delivers reduced feature sizes down to line widths as small as 78nm, a level of structural intricacy that represents a significant advance in fabrication complexity. The development of a general methodology to efficiently mix pentaerythritol triacrylate (PETA) with gold chloride hydrate (HAuCl4∙3H2O) is reported, where the gold salt concentration is adjustable on demand from zero to 20wt%. For the frst-time 7-Diethylamino-3-thenoylcoumarin (DETC) is used as the photoinitiator. Only 0.5wt% of DETC was required to promote both polymerisation and photoreduction of up to 20wt% of gold salt. This efficiency is the highest reported for Au-containing composite fabrication by two-photon lithography. Transmission Electron Microscopy (TEM) analysis confirmed the presence of small metallic nanoparticles (5.4±1.4nm for long axis / 3.7±0.9nm for short axis) embedded within the polymer matrix, whilst X-ray Photoelectron Spectroscopy (XPS) confirmed that they exist in the zero valent oxidation state. UV-vis spectroscopy defined that they exhibit the property of localised surface plasmon resonance (LSPR). The capability demonstrated in this study opens up new avenues for a range of applications, including plasmonics, metamaterials, flexible electronics and biosensors.