On the asymptotic reduction of a bifurcation equation for edge-buckling instabilities
Weakly clamped uniformly stretched thin elastic plates can experience edge buckling when subjected to a transverse pressure. This situation is revisited here for a circular plate, under the assumption of finite rotations and negligible bending stiffness in the pre-buckling range. The eigenproblem de...
| Main Author: | |
|---|---|
| Format: | Article |
| Published: |
Springer
2018
|
| Online Access: | https://eprints.nottingham.ac.uk/48940/ |
| Summary: | Weakly clamped uniformly stretched thin elastic plates can experience edge buckling when subjected to a transverse pressure. This situation is revisited here for a circular plate, under the assumption of finite rotations and negligible bending stiffness in the pre-buckling range. The eigenproblem describing this instability is formulated in terms of two singularly perturbed fourth-order differential equations involving the non-dimensional bending stiffness ε>0. By using an extension of the asymptotic reduction technique proposed by Coman and Haughton (Acta Mech 55:179–200, 2006), these equations are formally reduced to a simple second-order ordinary differential equation in the limit ε→0+. It is further shown that the predictions of this reduced problem are in excellent agreement with the direct numerical simulations of the original bifurcation equations. |
|---|