Neural circuitry underlying sustained attention in healthy adolescents and in ADHD symptomatology
Moment-to-moment reaction time variability on tasks of attention, often quantified by intra-individual response variability (IRV), provides a good indication of the degree to which an individual is vulnerable to lapses in sustained attention. Increased IRV is a hallmark of several disorders of atte...
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2018
|
| Subjects: | |
| Online Access: | https://eprints.nottingham.ac.uk/48681/ |
| _version_ | 1848797821613899776 |
|---|---|
| author | O'Halloran, Laura Cao, Zhipeng Ruddy, Kathy Jollans, Lee Albaugh, Matthew D. Aleni, Andrea Potter, Alexandra S. Vahey, Nigel Banaschewski, Tobias Hohmann, Sarah Bokde, Arun L.W. Bromberg, Uli Büchel, Christian Quinlan, Erin Burke Desrivières, Sylvane Flor, Herta Frouin, Vincent Gowland, Penny A. Heinz, Andreas Ittermann, Bernd Nees, Frauke Orfanos, Dimitri Papadopoulos Paus, Tomáš Smolka, Michael N. Walter, Henrik Schumann, Gunter Garavan, Hugh Kelly, Clare Whelan, Robert |
| author_facet | O'Halloran, Laura Cao, Zhipeng Ruddy, Kathy Jollans, Lee Albaugh, Matthew D. Aleni, Andrea Potter, Alexandra S. Vahey, Nigel Banaschewski, Tobias Hohmann, Sarah Bokde, Arun L.W. Bromberg, Uli Büchel, Christian Quinlan, Erin Burke Desrivières, Sylvane Flor, Herta Frouin, Vincent Gowland, Penny A. Heinz, Andreas Ittermann, Bernd Nees, Frauke Orfanos, Dimitri Papadopoulos Paus, Tomáš Smolka, Michael N. Walter, Henrik Schumann, Gunter Garavan, Hugh Kelly, Clare Whelan, Robert |
| author_sort | O'Halloran, Laura |
| building | Nottingham Research Data Repository |
| collection | Online Access |
| description | Moment-to-moment reaction time variability on tasks of attention, often quantified by intra-individual response variability (IRV), provides a good indication of the degree to which an individual is vulnerable to lapses in sustained attention. Increased IRV is a hallmark of several disorders of attention, including Attention-Deficit/Hyperactivity Disorder (ADHD). Here, task-based fMRI was used to provide the first examination of how average brain activation and functional connectivity patterns in adolescents are related to individual differences in sustained attention as measured by IRV. We computed IRV in a large sample of adolescents (n=758) across 'Go' trials of a Stop Signal Task (SST). A data-driven, multi-step analysis approach was used to identify networks associated with low IRV (i.e., good sustained attention) and high IRV (i.e., poorer sustained attention). Low IRV was associated with greater functional segregation (i.e., stronger negative connectivity) amongst an array of brain networks, particularly between cerebellum and motor, cerebellum and prefrontal, and occipital and motor networks. In contrast, high IRV was associated with stronger positive connectivity within the motor network bilaterally and between motor and parietal, prefrontal, and limbic networks. Consistent with these observations, a separate sample of adolescents exhibiting elevated ADHD symptoms had increased fMRI activation and stronger positive connectivity within the same motor network denoting poorer sustained attention, compared to a matched asymptomatic control sample. With respect to the functional connectivity signature of low IRV, there were no statistically significant differences in networks denoting good sustained attention between the ADHD symptom group and asymptomatic control group. We propose that sustained attentional processes are facilitated by an array of neural networks working together, and provide an empirical account of how the functional role of the cerebellum extends to cognition in adolescents. This work highlights the involvement of motor cortex in the integrity of sustained attention, and suggests that atypically strong connectivity within motor networks characterizes poor attentional capacity in both typically developing and ADHD symptomatic adolescents. |
| first_indexed | 2025-11-14T20:09:58Z |
| format | Article |
| id | nottingham-48681 |
| institution | University of Nottingham Malaysia Campus |
| institution_category | Local University |
| language | English |
| last_indexed | 2025-11-14T20:09:58Z |
| publishDate | 2018 |
| publisher | Elsevier |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | nottingham-486812018-12-21T04:30:17Z https://eprints.nottingham.ac.uk/48681/ Neural circuitry underlying sustained attention in healthy adolescents and in ADHD symptomatology O'Halloran, Laura Cao, Zhipeng Ruddy, Kathy Jollans, Lee Albaugh, Matthew D. Aleni, Andrea Potter, Alexandra S. Vahey, Nigel Banaschewski, Tobias Hohmann, Sarah Bokde, Arun L.W. Bromberg, Uli Büchel, Christian Quinlan, Erin Burke Desrivières, Sylvane Flor, Herta Frouin, Vincent Gowland, Penny A. Heinz, Andreas Ittermann, Bernd Nees, Frauke Orfanos, Dimitri Papadopoulos Paus, Tomáš Smolka, Michael N. Walter, Henrik Schumann, Gunter Garavan, Hugh Kelly, Clare Whelan, Robert Moment-to-moment reaction time variability on tasks of attention, often quantified by intra-individual response variability (IRV), provides a good indication of the degree to which an individual is vulnerable to lapses in sustained attention. Increased IRV is a hallmark of several disorders of attention, including Attention-Deficit/Hyperactivity Disorder (ADHD). Here, task-based fMRI was used to provide the first examination of how average brain activation and functional connectivity patterns in adolescents are related to individual differences in sustained attention as measured by IRV. We computed IRV in a large sample of adolescents (n=758) across 'Go' trials of a Stop Signal Task (SST). A data-driven, multi-step analysis approach was used to identify networks associated with low IRV (i.e., good sustained attention) and high IRV (i.e., poorer sustained attention). Low IRV was associated with greater functional segregation (i.e., stronger negative connectivity) amongst an array of brain networks, particularly between cerebellum and motor, cerebellum and prefrontal, and occipital and motor networks. In contrast, high IRV was associated with stronger positive connectivity within the motor network bilaterally and between motor and parietal, prefrontal, and limbic networks. Consistent with these observations, a separate sample of adolescents exhibiting elevated ADHD symptoms had increased fMRI activation and stronger positive connectivity within the same motor network denoting poorer sustained attention, compared to a matched asymptomatic control sample. With respect to the functional connectivity signature of low IRV, there were no statistically significant differences in networks denoting good sustained attention between the ADHD symptom group and asymptomatic control group. We propose that sustained attentional processes are facilitated by an array of neural networks working together, and provide an empirical account of how the functional role of the cerebellum extends to cognition in adolescents. This work highlights the involvement of motor cortex in the integrity of sustained attention, and suggests that atypically strong connectivity within motor networks characterizes poor attentional capacity in both typically developing and ADHD symptomatic adolescents. Elsevier 2018-04-01 Article PeerReviewed application/pdf en cc_by_nc_nd https://eprints.nottingham.ac.uk/48681/1/O_Halloran%20NIMG-17-2390R2%20and%20SI%20low%20res.pdf O'Halloran, Laura, Cao, Zhipeng, Ruddy, Kathy, Jollans, Lee, Albaugh, Matthew D., Aleni, Andrea, Potter, Alexandra S., Vahey, Nigel, Banaschewski, Tobias, Hohmann, Sarah, Bokde, Arun L.W., Bromberg, Uli, Büchel, Christian, Quinlan, Erin Burke, Desrivières, Sylvane, Flor, Herta, Frouin, Vincent, Gowland, Penny A., Heinz, Andreas, Ittermann, Bernd, Nees, Frauke, Orfanos, Dimitri Papadopoulos, Paus, Tomáš, Smolka, Michael N., Walter, Henrik, Schumann, Gunter, Garavan, Hugh, Kelly, Clare and Whelan, Robert (2018) Neural circuitry underlying sustained attention in healthy adolescents and in ADHD symptomatology. NeuroImage, 169 . pp. 395-406. ISSN 1095-9572 Functional connectivity fMRI Reaction-time variability SST Attention ADHD https://www.sciencedirect.com/science/article/pii/S1053811917310522 doi:10.1016/j.neuroimage.2017.12.030 doi:10.1016/j.neuroimage.2017.12.030 |
| spellingShingle | Functional connectivity fMRI Reaction-time variability SST Attention ADHD O'Halloran, Laura Cao, Zhipeng Ruddy, Kathy Jollans, Lee Albaugh, Matthew D. Aleni, Andrea Potter, Alexandra S. Vahey, Nigel Banaschewski, Tobias Hohmann, Sarah Bokde, Arun L.W. Bromberg, Uli Büchel, Christian Quinlan, Erin Burke Desrivières, Sylvane Flor, Herta Frouin, Vincent Gowland, Penny A. Heinz, Andreas Ittermann, Bernd Nees, Frauke Orfanos, Dimitri Papadopoulos Paus, Tomáš Smolka, Michael N. Walter, Henrik Schumann, Gunter Garavan, Hugh Kelly, Clare Whelan, Robert Neural circuitry underlying sustained attention in healthy adolescents and in ADHD symptomatology |
| title | Neural circuitry underlying sustained attention in healthy adolescents and in ADHD symptomatology |
| title_full | Neural circuitry underlying sustained attention in healthy adolescents and in ADHD symptomatology |
| title_fullStr | Neural circuitry underlying sustained attention in healthy adolescents and in ADHD symptomatology |
| title_full_unstemmed | Neural circuitry underlying sustained attention in healthy adolescents and in ADHD symptomatology |
| title_short | Neural circuitry underlying sustained attention in healthy adolescents and in ADHD symptomatology |
| title_sort | neural circuitry underlying sustained attention in healthy adolescents and in adhd symptomatology |
| topic | Functional connectivity fMRI Reaction-time variability SST Attention ADHD |
| url | https://eprints.nottingham.ac.uk/48681/ https://eprints.nottingham.ac.uk/48681/ https://eprints.nottingham.ac.uk/48681/ |