Many analysts, one dataset: making transparent how variations in analytical choices affect results
Twenty-nine teams involving 61 analysts used the same dataset to address the same research question: whether soccer referees are more likely to give red cards to dark skin toned players than light skin toned players. Analytic approaches varied widely across teams, and estimated effect sizes ranged f...
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Published: |
SAGE Publications
2018
|
| Subjects: | |
| Online Access: | https://eprints.nottingham.ac.uk/48166/ |
| _version_ | 1848797707302338560 |
|---|---|
| author | Silberzahn, R. Uhlmann, E.L. Martin, D.P. Anselmi, P. Aust, F. Awtrey, E. Bahník, Š. Bai, F. Bannard, C. Bonnier, E. Carlsson, R. Cheung, F. Christensen, G. Clay, R. Craig, M.A. Dalla Rosa, A. Dam, L. Evans, M.H. Flores Cervantes, I. Fong, N. Gamez-Djokic, M. Glenz, A. Gordon-McKeon, S. Heaton, T.J. Hederos, K. Heene, M. Hofelich Mohr, A.J. Högden, F. Hui, K. Johannesson, M. Kalodimos, J. Kaszubowski, E. Kennedy, D.M. Lei, R. Lindsay, T.A. Liverani, S. Madan, C.R. Molden, D. Molleman, E. Morey, R.D. Mulder, L.B. Nijstad, B.R. Pope, N.G. Pope, B. Prenoveau, J.M. Rink, F. Robusto, E. Roderique, H. Sandberg, A. Schlüter, E. Schönbrodt, F.D. Sherman, M.F. Sommer, S.A. Sotak, K. Spain, S. Spörlein, C. Stafford, T. Stefanutti, L. Tauber, S. Ullrich, J. Vianello, M. Wagenmakers, E.-J. Witkowiak, M. Yoon, S. Nosek, B.A. |
| author_facet | Silberzahn, R. Uhlmann, E.L. Martin, D.P. Anselmi, P. Aust, F. Awtrey, E. Bahník, Š. Bai, F. Bannard, C. Bonnier, E. Carlsson, R. Cheung, F. Christensen, G. Clay, R. Craig, M.A. Dalla Rosa, A. Dam, L. Evans, M.H. Flores Cervantes, I. Fong, N. Gamez-Djokic, M. Glenz, A. Gordon-McKeon, S. Heaton, T.J. Hederos, K. Heene, M. Hofelich Mohr, A.J. Högden, F. Hui, K. Johannesson, M. Kalodimos, J. Kaszubowski, E. Kennedy, D.M. Lei, R. Lindsay, T.A. Liverani, S. Madan, C.R. Molden, D. Molleman, E. Morey, R.D. Mulder, L.B. Nijstad, B.R. Pope, N.G. Pope, B. Prenoveau, J.M. Rink, F. Robusto, E. Roderique, H. Sandberg, A. Schlüter, E. Schönbrodt, F.D. Sherman, M.F. Sommer, S.A. Sotak, K. Spain, S. Spörlein, C. Stafford, T. Stefanutti, L. Tauber, S. Ullrich, J. Vianello, M. Wagenmakers, E.-J. Witkowiak, M. Yoon, S. Nosek, B.A. |
| author_sort | Silberzahn, R. |
| building | Nottingham Research Data Repository |
| collection | Online Access |
| description | Twenty-nine teams involving 61 analysts used the same dataset to address the same research question: whether soccer referees are more likely to give red cards to dark skin toned players than light skin toned players. Analytic approaches varied widely across teams, and estimated effect sizes ranged from 0.89 to 2.93 in odds ratio units, with a median of 1.31. Twenty teams (69%) found a statistically significant positive effect and nine teams (31%) observed a nonsignificant relationship. Overall 29 different analyses used 21 unique combinations of covariates. We found that neither analysts' prior beliefs about the effect, nor their level of expertise, nor peer-reviewed quality of analysis readily explained variation in analysis outcomes. This suggests that significant variation in the results of analyses of complex data may be difficult to avoid, even by experts with honest intentions. Crowdsourcing data analysis, a strategy by which numerous research teams are recruited to simultaneously investigate the same research question, makes transparent how defensible, yet subjective analytic choices influence research results. |
| first_indexed | 2025-11-14T20:08:09Z |
| format | Article |
| id | nottingham-48166 |
| institution | University of Nottingham Malaysia Campus |
| institution_category | Local University |
| last_indexed | 2025-11-14T20:08:09Z |
| publishDate | 2018 |
| publisher | SAGE Publications |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | nottingham-481662020-05-04T19:08:33Z https://eprints.nottingham.ac.uk/48166/ Many analysts, one dataset: making transparent how variations in analytical choices affect results Silberzahn, R. Uhlmann, E.L. Martin, D.P. Anselmi, P. Aust, F. Awtrey, E. Bahník, Š. Bai, F. Bannard, C. Bonnier, E. Carlsson, R. Cheung, F. Christensen, G. Clay, R. Craig, M.A. Dalla Rosa, A. Dam, L. Evans, M.H. Flores Cervantes, I. Fong, N. Gamez-Djokic, M. Glenz, A. Gordon-McKeon, S. Heaton, T.J. Hederos, K. Heene, M. Hofelich Mohr, A.J. Högden, F. Hui, K. Johannesson, M. Kalodimos, J. Kaszubowski, E. Kennedy, D.M. Lei, R. Lindsay, T.A. Liverani, S. Madan, C.R. Molden, D. Molleman, E. Morey, R.D. Mulder, L.B. Nijstad, B.R. Pope, N.G. Pope, B. Prenoveau, J.M. Rink, F. Robusto, E. Roderique, H. Sandberg, A. Schlüter, E. Schönbrodt, F.D. Sherman, M.F. Sommer, S.A. Sotak, K. Spain, S. Spörlein, C. Stafford, T. Stefanutti, L. Tauber, S. Ullrich, J. Vianello, M. Wagenmakers, E.-J. Witkowiak, M. Yoon, S. Nosek, B.A. Twenty-nine teams involving 61 analysts used the same dataset to address the same research question: whether soccer referees are more likely to give red cards to dark skin toned players than light skin toned players. Analytic approaches varied widely across teams, and estimated effect sizes ranged from 0.89 to 2.93 in odds ratio units, with a median of 1.31. Twenty teams (69%) found a statistically significant positive effect and nine teams (31%) observed a nonsignificant relationship. Overall 29 different analyses used 21 unique combinations of covariates. We found that neither analysts' prior beliefs about the effect, nor their level of expertise, nor peer-reviewed quality of analysis readily explained variation in analysis outcomes. This suggests that significant variation in the results of analyses of complex data may be difficult to avoid, even by experts with honest intentions. Crowdsourcing data analysis, a strategy by which numerous research teams are recruited to simultaneously investigate the same research question, makes transparent how defensible, yet subjective analytic choices influence research results. SAGE Publications 2018-08-23 Article PeerReviewed Silberzahn, R., Uhlmann, E.L., Martin, D.P., Anselmi, P., Aust, F., Awtrey, E., Bahník, Š., Bai, F., Bannard, C., Bonnier, E., Carlsson, R., Cheung, F., Christensen, G., Clay, R., Craig, M.A., Dalla Rosa, A., Dam, L., Evans, M.H., Flores Cervantes, I., Fong, N., Gamez-Djokic, M., Glenz, A., Gordon-McKeon, S., Heaton, T.J., Hederos, K., Heene, M., Hofelich Mohr, A.J., Högden, F., Hui, K., Johannesson, M., Kalodimos, J., Kaszubowski, E., Kennedy, D.M., Lei, R., Lindsay, T.A., Liverani, S., Madan, C.R., Molden, D., Molleman, E., Morey, R.D., Mulder, L.B., Nijstad, B.R., Pope, N.G., Pope, B., Prenoveau, J.M., Rink, F., Robusto, E., Roderique, H., Sandberg, A., Schlüter, E., Schönbrodt, F.D., Sherman, M.F., Sommer, S.A., Sotak, K., Spain, S., Spörlein, C., Stafford, T., Stefanutti, L., Tauber, S., Ullrich, J., Vianello, M., Wagenmakers, E.-J., Witkowiak, M., Yoon, S. and Nosek, B.A. (2018) Many analysts, one dataset: making transparent how variations in analytical choices affect results. Advances in Methods and Practices in Psychological Science . ISSN 2515-2459 Crowdsourcing science; Data analysis; Scientific transparency; Open data; Open materials http://journals.sagepub.com/doi/10.1177/2515245917747646 doi:10.1177/2515245917747646 doi:10.1177/2515245917747646 |
| spellingShingle | Crowdsourcing science; Data analysis; Scientific transparency; Open data; Open materials Silberzahn, R. Uhlmann, E.L. Martin, D.P. Anselmi, P. Aust, F. Awtrey, E. Bahník, Š. Bai, F. Bannard, C. Bonnier, E. Carlsson, R. Cheung, F. Christensen, G. Clay, R. Craig, M.A. Dalla Rosa, A. Dam, L. Evans, M.H. Flores Cervantes, I. Fong, N. Gamez-Djokic, M. Glenz, A. Gordon-McKeon, S. Heaton, T.J. Hederos, K. Heene, M. Hofelich Mohr, A.J. Högden, F. Hui, K. Johannesson, M. Kalodimos, J. Kaszubowski, E. Kennedy, D.M. Lei, R. Lindsay, T.A. Liverani, S. Madan, C.R. Molden, D. Molleman, E. Morey, R.D. Mulder, L.B. Nijstad, B.R. Pope, N.G. Pope, B. Prenoveau, J.M. Rink, F. Robusto, E. Roderique, H. Sandberg, A. Schlüter, E. Schönbrodt, F.D. Sherman, M.F. Sommer, S.A. Sotak, K. Spain, S. Spörlein, C. Stafford, T. Stefanutti, L. Tauber, S. Ullrich, J. Vianello, M. Wagenmakers, E.-J. Witkowiak, M. Yoon, S. Nosek, B.A. Many analysts, one dataset: making transparent how variations in analytical choices affect results |
| title | Many analysts, one dataset: making transparent how variations in analytical choices affect results |
| title_full | Many analysts, one dataset: making transparent how variations in analytical choices affect results |
| title_fullStr | Many analysts, one dataset: making transparent how variations in analytical choices affect results |
| title_full_unstemmed | Many analysts, one dataset: making transparent how variations in analytical choices affect results |
| title_short | Many analysts, one dataset: making transparent how variations in analytical choices affect results |
| title_sort | many analysts, one dataset: making transparent how variations in analytical choices affect results |
| topic | Crowdsourcing science; Data analysis; Scientific transparency; Open data; Open materials |
| url | https://eprints.nottingham.ac.uk/48166/ https://eprints.nottingham.ac.uk/48166/ https://eprints.nottingham.ac.uk/48166/ |