Entanglement entropy in Fermi gases and Anderson's orthogonality catastrophe

We study the ground-state entanglement entropy of a finite subsystem of size L of an infinite system of noninteracting fermions scattered by a potential of finite range a. We derive a general relation between the scattering matrix and the overlap matrix and use it to prove that for a one-dimensional...

Full description

Bibliographic Details
Main Author: Ossipov, A.
Format: Article
Published: American Physical Society 2014
Online Access:https://eprints.nottingham.ac.uk/48101/
Description
Summary:We study the ground-state entanglement entropy of a finite subsystem of size L of an infinite system of noninteracting fermions scattered by a potential of finite range a. We derive a general relation between the scattering matrix and the overlap matrix and use it to prove that for a one-dimensional symmetric potential the von Neumann entropy, the Rényi entropies, and the full counting statistics are robust against potential scattering, provided that L/a≫1. The results of numerical calculations support the validity of this conclusion for a generic potential.