Component-based modeling of PEM fuel cells with bond graphs

A polymer electrolyte membrane (PEM) fuel cell is a power generation device that transforms chemical energy contained within hydrogen and oxygen gases into useful electricity. The performance of a PEMFC unit is governed by three interdependent physical phenomena: heat, mass, and charge transfer. Whe...

Full description

Bibliographic Details
Main Authors: Vasilyev, A., Andrews, John, Jackson, L.M., Dunnett, S.J., Davies, B.
Format: Article
Published: Elsevier 2017
Subjects:
Online Access:https://eprints.nottingham.ac.uk/47842/
Description
Summary:A polymer electrolyte membrane (PEM) fuel cell is a power generation device that transforms chemical energy contained within hydrogen and oxygen gases into useful electricity. The performance of a PEMFC unit is governed by three interdependent physical phenomena: heat, mass, and charge transfer. When modelling such a multi-physical system it is advantageous to use an approach capable of representing all the processes in a unified fashion. This paper presents a component-based model of PEMFCs developed using the bond graph (BG) technique in Modelica language. The basics of the BG method are outlined and a number of relevant publications are reviewed. Model assumptions and necessary equations for each fuel cell component are outlined. The overall model is constructed from a set of bond-graphic blocks within thermal, pneumatic and electrical domains. The model output was compared with the experimental data gathered from a two-cell stack and demonstrated a good accuracy in predicting system behaviour. In the future the designed model will be used for fuel cell reliability studies.