Light neutrino masses from a non-Hermitian Yukawa theory
Working within the context of PT-symmetric quantum mechanics, we begin by describing a non-Hermitian extension of QED that is both Lorentz invariant and consistent with unitarity. We show that the non-Hermitian Dirac mass matrix of this theory exhibits an exceptional point, corresponding to an effec...
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Published: |
IOP Publishing
2017
|
| Online Access: | https://eprints.nottingham.ac.uk/47786/ |
| Summary: | Working within the context of PT-symmetric quantum mechanics, we begin by describing a non-Hermitian extension of QED that is both Lorentz invariant and consistent with unitarity. We show that the non-Hermitian Dirac mass matrix of this theory exhibits an exceptional point, corresponding to an effectively massless theory whose conserved current is either right- or left-chiral dominated. With this inspiration, we are able to construct a non- Hermitian model of light Dirac neutrino masses from Hermitian and anti-Hermitian Yukawa couplings that are both of order unity. We finish by highlighting potential phenomenological implications of this model. |
|---|