A novel framework for making dominant point detection methods non-parametric
Most dominant point detection methods require heuristically chosen control parameters. One of the commonly used control parameter is maximum deviation. This paper uses a theoretical bound of the maximum deviation of pixels obtained by digitization of a line segment for constructing a general framewo...
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Published: |
Elsevier
2012
|
| Subjects: | |
| Online Access: | https://eprints.nottingham.ac.uk/47521/ |
| Summary: | Most dominant point detection methods require heuristically chosen control parameters. One of the commonly used control parameter is maximum deviation. This paper uses a theoretical bound of the maximum deviation of pixels obtained by digitization of a line segment for constructing a general framework to make most dominant point detection methods non-parametric. The derived analytical bound of the maximum deviation can be used as a natural bench mark for the line fitting algorithms and thus dominant point detection methods can be made parameter-independent and non-heuristic. Most methods can easily incorporate the bound. This is demonstrated using three categorically different dominant point detection methods. Such non-parametric approach retains the characteristics of the digital curve while providing good fitting performance and compression ratio for all the three methods using a variety of digital, non-digital, and noisy curves. |
|---|