Separating invariants for arbitrary linear actions of the additive group

We consider an arbitrary representation of the additive group Ga over a field of characteristic zero and give an explicit description of a finite separating set in the corresponding ring of invariants.

Bibliographic Details
Main Authors: Dufresne, Emilie, Elmer, Jonathan, Sezer, Müfit
Format: Article
Published: Springer 2014
Online Access:https://eprints.nottingham.ac.uk/47099/
_version_ 1848797467648196608
author Dufresne, Emilie
Elmer, Jonathan
Sezer, Müfit
author_facet Dufresne, Emilie
Elmer, Jonathan
Sezer, Müfit
author_sort Dufresne, Emilie
building Nottingham Research Data Repository
collection Online Access
description We consider an arbitrary representation of the additive group Ga over a field of characteristic zero and give an explicit description of a finite separating set in the corresponding ring of invariants.
first_indexed 2025-11-14T20:04:21Z
format Article
id nottingham-47099
institution University of Nottingham Malaysia Campus
institution_category Local University
last_indexed 2025-11-14T20:04:21Z
publishDate 2014
publisher Springer
recordtype eprints
repository_type Digital Repository
spelling nottingham-470992020-05-04T16:42:17Z https://eprints.nottingham.ac.uk/47099/ Separating invariants for arbitrary linear actions of the additive group Dufresne, Emilie Elmer, Jonathan Sezer, Müfit We consider an arbitrary representation of the additive group Ga over a field of characteristic zero and give an explicit description of a finite separating set in the corresponding ring of invariants. Springer 2014-01-03 Article PeerReviewed Dufresne, Emilie, Elmer, Jonathan and Sezer, Müfit (2014) Separating invariants for arbitrary linear actions of the additive group. Manuscripta Mathematica, 143 (1-2). pp. 207-219. ISSN 0025-2611 https://link.springer.com/article/10.1007/s00229-013-0625-y doi:10.1007/s00229-013-0625-y doi:10.1007/s00229-013-0625-y
spellingShingle Dufresne, Emilie
Elmer, Jonathan
Sezer, Müfit
Separating invariants for arbitrary linear actions of the additive group
title Separating invariants for arbitrary linear actions of the additive group
title_full Separating invariants for arbitrary linear actions of the additive group
title_fullStr Separating invariants for arbitrary linear actions of the additive group
title_full_unstemmed Separating invariants for arbitrary linear actions of the additive group
title_short Separating invariants for arbitrary linear actions of the additive group
title_sort separating invariants for arbitrary linear actions of the additive group
url https://eprints.nottingham.ac.uk/47099/
https://eprints.nottingham.ac.uk/47099/
https://eprints.nottingham.ac.uk/47099/