Cyclic viscoplasticity testing and modeling of a service-aged P91 steel

A service-aged P91 steel was used to perform an experimental program of cyclic mechanical testing in the temperature range of 400 °C–600 °C, under isothermal conditions, using both saw-tooth and dwell (inclusion of a constant strain dwell period at the maximum (tensile) strain within the cycle) wave...

Full description

Bibliographic Details
Main Authors: Hyde, Christopher J., Sun, Wei, Hyde, T.H., Rouse, J.P., Farragher, T., O'Dowd, Noel P., Leen, S.B.
Format: Article
Published: American Society of Mechanical Engineers 2014
Online Access:https://eprints.nottingham.ac.uk/46522/
Description
Summary:A service-aged P91 steel was used to perform an experimental program of cyclic mechanical testing in the temperature range of 400 °C–600 °C, under isothermal conditions, using both saw-tooth and dwell (inclusion of a constant strain dwell period at the maximum (tensile) strain within the cycle) waveforms. The results of this testing were used to identify the material constants for a modified Chaboche, unified viscoplasticity model, which can deal with rate-dependant cyclic effects, such as combined isotropic and kinematic hardening, and time-dependent effects, such as creep, associated with viscoplasticity. The model has been modified in order that the two-stage (nonlinear primary and linear secondary) softening which occurs within the cyclic response of the service-aged P91 material is accounted for and accurately predicted. The characterization of the cyclic viscoplasticity behavior of the service-aged P91 material at 500 °C is presented and compared to experimental stress–strain loops, cyclic softening and creep relaxation, obtained from the cyclic isothermal tests.