Minimality and mutation-equivalence of polygons

We introduce a concept of minimality for Fano polygons. We show that, up to mutation, there are only finitely many Fano polygons with given singularity content, and give an algorithm to determine representatives for all mutation-equivalence classes of such polygons. This is a key step in a program t...

Full description

Bibliographic Details
Main Authors: Kasprzyk, Alexander M., Nill, Benjamin, Prince, Thomas
Format: Article
Published: Cambridge University Press 2017
Online Access:https://eprints.nottingham.ac.uk/45035/
_version_ 1848797053765812224
author Kasprzyk, Alexander M.
Nill, Benjamin
Prince, Thomas
author_facet Kasprzyk, Alexander M.
Nill, Benjamin
Prince, Thomas
author_sort Kasprzyk, Alexander M.
building Nottingham Research Data Repository
collection Online Access
description We introduce a concept of minimality for Fano polygons. We show that, up to mutation, there are only finitely many Fano polygons with given singularity content, and give an algorithm to determine representatives for all mutation-equivalence classes of such polygons. This is a key step in a program to classify orbifold del Pezzo surfaces using mirror symmetry. As an application, we classify all Fano polygons such that the corresponding toric surface is qG-deformation-equivalent to either (i) a smooth surface; or (ii) a surface with only singularities of type 1/3(1,1).
first_indexed 2025-11-14T19:57:46Z
format Article
id nottingham-45035
institution University of Nottingham Malaysia Campus
institution_category Local University
last_indexed 2025-11-14T19:57:46Z
publishDate 2017
publisher Cambridge University Press
recordtype eprints
repository_type Digital Repository
spelling nottingham-450352020-05-04T19:01:15Z https://eprints.nottingham.ac.uk/45035/ Minimality and mutation-equivalence of polygons Kasprzyk, Alexander M. Nill, Benjamin Prince, Thomas We introduce a concept of minimality for Fano polygons. We show that, up to mutation, there are only finitely many Fano polygons with given singularity content, and give an algorithm to determine representatives for all mutation-equivalence classes of such polygons. This is a key step in a program to classify orbifold del Pezzo surfaces using mirror symmetry. As an application, we classify all Fano polygons such that the corresponding toric surface is qG-deformation-equivalent to either (i) a smooth surface; or (ii) a surface with only singularities of type 1/3(1,1). Cambridge University Press 2017-08-17 Article PeerReviewed Kasprzyk, Alexander M., Nill, Benjamin and Prince, Thomas (2017) Minimality and mutation-equivalence of polygons. Forum of Mathematics, Sigma, 5 (e18). pp. 1-48. ISSN 2050-5094 https://www.cambridge.org/core/journals/forum-of-mathematics-sigma/article/minimality-and-mutationequivalence-of-polygons/7A51841FD8742360873C613EF6F1BF75 doi:10.1017/fms.2017.10 doi:10.1017/fms.2017.10
spellingShingle Kasprzyk, Alexander M.
Nill, Benjamin
Prince, Thomas
Minimality and mutation-equivalence of polygons
title Minimality and mutation-equivalence of polygons
title_full Minimality and mutation-equivalence of polygons
title_fullStr Minimality and mutation-equivalence of polygons
title_full_unstemmed Minimality and mutation-equivalence of polygons
title_short Minimality and mutation-equivalence of polygons
title_sort minimality and mutation-equivalence of polygons
url https://eprints.nottingham.ac.uk/45035/
https://eprints.nottingham.ac.uk/45035/
https://eprints.nottingham.ac.uk/45035/