Differential effects of short-term β agonist and growth hormone treatments on expression of myosin heavy chain IIB and associated metabolic genes in sheep muscle

Growth hormone (GH) and β agonists increase muscle mass, but the mechanisms for this response are unclear and the magnitude of response is thought to vary with age of animal. To investigate the mechanisms driving the muscle response to these agents, we examined the effects of short-term (6 day) admi...

Full description

Bibliographic Details
Main Authors: Hemmings, K.M., Daniel, Zoe C.T.R., Buttery, P.J., Parr, T., Brameld, John M.
Format: Article
Published: Cambridge University Press 2014
Subjects:
Online Access:https://eprints.nottingham.ac.uk/44885/
_version_ 1848797020664365056
author Hemmings, K.M.
Daniel, Zoe C.T.R.
Buttery, P.J.
Parr, T.
Brameld, John M.
author_facet Hemmings, K.M.
Daniel, Zoe C.T.R.
Buttery, P.J.
Parr, T.
Brameld, John M.
author_sort Hemmings, K.M.
building Nottingham Research Data Repository
collection Online Access
description Growth hormone (GH) and β agonists increase muscle mass, but the mechanisms for this response are unclear and the magnitude of response is thought to vary with age of animal. To investigate the mechanisms driving the muscle response to these agents, we examined the effects of short-term (6 day) administration of GH or cimaterol (a β2-adrenergic agonist, BA) on skeletal muscle phenotype in both young (day 60) and mature (day 120) lambs. Expression of myosin heavy chain (MyHC) isoforms were measured in Longissimus dorsi (LD), Semitendinosus (ST) and Supraspinatus (SS) muscles as markers of fibre type and metabolic enzyme activities were measured in LD. To investigate potential mechanisms regulating the changes in fibre type/metabolism, expression or activity of a number of signalling molecules were examined in LD. There were no effects of GH administration on MyHC isoform expression at either the mRNA or protein level in any of the muscles. However, BA treatment induced a proportional change in MyHC mRNA expression at both ages, with the %MyHCI and/or IIA mRNA being significantly decreased in all three muscles and % MyHCIIX/IIB mRNA significantly increased in the LD and ST. BA treatment induced de novo expression of MyHCIIB mRNA in LD, the fastest isoform not normally expressed in sheep LD, as well as increasing expression in the other two muscles. In the LD, the increased expression of the fastest MyHC isoforms (IIX and IIB) was associated with a decrease in isocitrate dehydrogenase activity, but no change in lactate dehydrogenase activity, indicating a reduced capacity for oxidative metabolism. In both young and mature lambs, changes in expression of metabolic regulatory factors were observed that might induce these changes in muscle metabolism/fibre type. In particular, BA treatment decreased PPAR-γ coactivator-1β mRNA and increased receptor-interacting protein 140 mRNA. The results suggest that the two agents work via different mechanisms or over different timescales, with only BA inducing changes in muscle mass and transitions to a faster, less oxidative fibre type after a 6-day treatment.
first_indexed 2025-11-14T19:57:14Z
format Article
id nottingham-44885
institution University of Nottingham Malaysia Campus
institution_category Local University
last_indexed 2025-11-14T19:57:14Z
publishDate 2014
publisher Cambridge University Press
recordtype eprints
repository_type Digital Repository
spelling nottingham-448852020-05-04T16:54:09Z https://eprints.nottingham.ac.uk/44885/ Differential effects of short-term β agonist and growth hormone treatments on expression of myosin heavy chain IIB and associated metabolic genes in sheep muscle Hemmings, K.M. Daniel, Zoe C.T.R. Buttery, P.J. Parr, T. Brameld, John M. Growth hormone (GH) and β agonists increase muscle mass, but the mechanisms for this response are unclear and the magnitude of response is thought to vary with age of animal. To investigate the mechanisms driving the muscle response to these agents, we examined the effects of short-term (6 day) administration of GH or cimaterol (a β2-adrenergic agonist, BA) on skeletal muscle phenotype in both young (day 60) and mature (day 120) lambs. Expression of myosin heavy chain (MyHC) isoforms were measured in Longissimus dorsi (LD), Semitendinosus (ST) and Supraspinatus (SS) muscles as markers of fibre type and metabolic enzyme activities were measured in LD. To investigate potential mechanisms regulating the changes in fibre type/metabolism, expression or activity of a number of signalling molecules were examined in LD. There were no effects of GH administration on MyHC isoform expression at either the mRNA or protein level in any of the muscles. However, BA treatment induced a proportional change in MyHC mRNA expression at both ages, with the %MyHCI and/or IIA mRNA being significantly decreased in all three muscles and % MyHCIIX/IIB mRNA significantly increased in the LD and ST. BA treatment induced de novo expression of MyHCIIB mRNA in LD, the fastest isoform not normally expressed in sheep LD, as well as increasing expression in the other two muscles. In the LD, the increased expression of the fastest MyHC isoforms (IIX and IIB) was associated with a decrease in isocitrate dehydrogenase activity, but no change in lactate dehydrogenase activity, indicating a reduced capacity for oxidative metabolism. In both young and mature lambs, changes in expression of metabolic regulatory factors were observed that might induce these changes in muscle metabolism/fibre type. In particular, BA treatment decreased PPAR-γ coactivator-1β mRNA and increased receptor-interacting protein 140 mRNA. The results suggest that the two agents work via different mechanisms or over different timescales, with only BA inducing changes in muscle mass and transitions to a faster, less oxidative fibre type after a 6-day treatment. Cambridge University Press 2014-09-12 Article PeerReviewed Hemmings, K.M., Daniel, Zoe C.T.R., Buttery, P.J., Parr, T. and Brameld, John M. (2014) Differential effects of short-term β agonist and growth hormone treatments on expression of myosin heavy chain IIB and associated metabolic genes in sheep muscle. Animal, 9 (2). pp. 285-294. ISSN 1751-732X β agonist growth hormone muscle fibre type myosin heavy chain sheep https://www.cambridge.org/core/journals/animal/article/differential-effects-of-shortterm-agonist-and-growth-hormone-treatments-on-expression-of-myosin-heavy-chain-iib-and-associated-metabolic-genes-in-sheep-muscle/8962D4EA4C1378B24858CAF54D10CF95# doi:10.1017/S175173111400233X doi:10.1017/S175173111400233X
spellingShingle β agonist
growth hormone
muscle fibre type
myosin heavy chain
sheep
Hemmings, K.M.
Daniel, Zoe C.T.R.
Buttery, P.J.
Parr, T.
Brameld, John M.
Differential effects of short-term β agonist and growth hormone treatments on expression of myosin heavy chain IIB and associated metabolic genes in sheep muscle
title Differential effects of short-term β agonist and growth hormone treatments on expression of myosin heavy chain IIB and associated metabolic genes in sheep muscle
title_full Differential effects of short-term β agonist and growth hormone treatments on expression of myosin heavy chain IIB and associated metabolic genes in sheep muscle
title_fullStr Differential effects of short-term β agonist and growth hormone treatments on expression of myosin heavy chain IIB and associated metabolic genes in sheep muscle
title_full_unstemmed Differential effects of short-term β agonist and growth hormone treatments on expression of myosin heavy chain IIB and associated metabolic genes in sheep muscle
title_short Differential effects of short-term β agonist and growth hormone treatments on expression of myosin heavy chain IIB and associated metabolic genes in sheep muscle
title_sort differential effects of short-term β agonist and growth hormone treatments on expression of myosin heavy chain iib and associated metabolic genes in sheep muscle
topic β agonist
growth hormone
muscle fibre type
myosin heavy chain
sheep
url https://eprints.nottingham.ac.uk/44885/
https://eprints.nottingham.ac.uk/44885/
https://eprints.nottingham.ac.uk/44885/