Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses

Domain wall motion driven by ultra-short laser pulses is a prerequisite for envisaged low-power spintronics combining storage of information in magnetoelectronic devices with high speed and long distance transmission of information encoded in circularly polarized light. Here we demonstrate the conve...

Full description

Bibliographic Details
Main Authors: Janda, T., Roy, P.E., Otxoa, R.M., Soban, Z., Ramsay, A., Irvine, A.C., Trojánek, F., Surynek, M., Campion, R.P., Gallagher, B.L., Němec, P., Jungwirth, T., Wunderlich, J.
Format: Article
Language:English
English
Published: Nature Publishing Group 2017
Subjects:
Online Access:https://eprints.nottingham.ac.uk/44289/
_version_ 1848796881925177344
author Janda, T.
Roy, P.E.
Otxoa, R.M.
Soban, Z.
Ramsay, A.
Irvine, A.C.
Trojánek, F.
Surynek, M.
Campion, R.P.
Gallagher, B.L.
Němec, P.
Jungwirth, T.
Wunderlich, J.
author_facet Janda, T.
Roy, P.E.
Otxoa, R.M.
Soban, Z.
Ramsay, A.
Irvine, A.C.
Trojánek, F.
Surynek, M.
Campion, R.P.
Gallagher, B.L.
Němec, P.
Jungwirth, T.
Wunderlich, J.
author_sort Janda, T.
building Nottingham Research Data Repository
collection Online Access
description Domain wall motion driven by ultra-short laser pulses is a prerequisite for envisaged low-power spintronics combining storage of information in magnetoelectronic devices with high speed and long distance transmission of information encoded in circularly polarized light. Here we demonstrate the conversion of the circular polarization of incident femtosecond laser pulses into inertial displacement of a domain wall in a ferromagnetic semiconductor. In our study we combine electrical measurements and magneto-optical imaging of the domain wall displacement with micromagnetic simulations. The optical spin transfer torque acts over a picosecond recombination time of the spin polarized photo-carriers which only leads to a deformation of the internal domain wall structure. We show that subsequent depinning and micro-meter distance displacement without an applied magnetic field or any other external stimuli can only occur due to the inertia of the domain wall.
first_indexed 2025-11-14T19:55:02Z
format Article
id nottingham-44289
institution University of Nottingham Malaysia Campus
institution_category Local University
language English
English
last_indexed 2025-11-14T19:55:02Z
publishDate 2017
publisher Nature Publishing Group
recordtype eprints
repository_type Digital Repository
spelling nottingham-442892018-06-12T06:00:26Z https://eprints.nottingham.ac.uk/44289/ Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses Janda, T. Roy, P.E. Otxoa, R.M. Soban, Z. Ramsay, A. Irvine, A.C. Trojánek, F. Surynek, M. Campion, R.P. Gallagher, B.L. Němec, P. Jungwirth, T. Wunderlich, J. Domain wall motion driven by ultra-short laser pulses is a prerequisite for envisaged low-power spintronics combining storage of information in magnetoelectronic devices with high speed and long distance transmission of information encoded in circularly polarized light. Here we demonstrate the conversion of the circular polarization of incident femtosecond laser pulses into inertial displacement of a domain wall in a ferromagnetic semiconductor. In our study we combine electrical measurements and magneto-optical imaging of the domain wall displacement with micromagnetic simulations. The optical spin transfer torque acts over a picosecond recombination time of the spin polarized photo-carriers which only leads to a deformation of the internal domain wall structure. We show that subsequent depinning and micro-meter distance displacement without an applied magnetic field or any other external stimuli can only occur due to the inertia of the domain wall. Nature Publishing Group 2017-05-17 Article PeerReviewed application/pdf en https://eprints.nottingham.ac.uk/44289/1/DW_inertia_resub_rev_170226.pdf application/pdf en cc_by https://eprints.nottingham.ac.uk/44289/7/Domain%20ncomms15226.pdf Janda, T., Roy, P.E., Otxoa, R.M., Soban, Z., Ramsay, A., Irvine, A.C., Trojánek, F., Surynek, M., Campion, R.P., Gallagher, B.L., Němec, P., Jungwirth, T. and Wunderlich, J. (2017) Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses. Nature Communications, 8 . 15226/1-15226/7. ISSN 2041-1723 Electronic and spintronic devices Spintronics Ultrafast photonics http://www.nature.com/articles/ncomms15226 doi:10.1038/ncomms15226 doi:10.1038/ncomms15226
spellingShingle Electronic and spintronic devices
Spintronics
Ultrafast photonics
Janda, T.
Roy, P.E.
Otxoa, R.M.
Soban, Z.
Ramsay, A.
Irvine, A.C.
Trojánek, F.
Surynek, M.
Campion, R.P.
Gallagher, B.L.
Němec, P.
Jungwirth, T.
Wunderlich, J.
Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses
title Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses
title_full Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses
title_fullStr Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses
title_full_unstemmed Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses
title_short Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses
title_sort inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses
topic Electronic and spintronic devices
Spintronics
Ultrafast photonics
url https://eprints.nottingham.ac.uk/44289/
https://eprints.nottingham.ac.uk/44289/
https://eprints.nottingham.ac.uk/44289/