X-ray computed tomography of additively manufactured metal parts: the effect of magnification and reconstruction sampling on surface topography measurement

X-ray computed tomography (XCT) has recently become recognised as a viable method of surface topography measurement for additively manufactured (AM) metal parts [1–5]. AM is capable of producing internal features that are inaccessible to other surface topography measurement instruments [6,7], which...

Full description

Bibliographic Details
Main Authors: Thompson, Adam, Körner, Lars, Senin, Nicola, Lawes, Simon, Leach, Richard, Maskery, Ian
Format: Conference or Workshop Item
Published: 2017
Subjects:
Online Access:https://eprints.nottingham.ac.uk/44020/
_version_ 1848796818894225408
author Thompson, Adam
Körner, Lars
Senin, Nicola
Lawes, Simon
Leach, Richard
Maskery, Ian
author_facet Thompson, Adam
Körner, Lars
Senin, Nicola
Lawes, Simon
Leach, Richard
Maskery, Ian
author_sort Thompson, Adam
building Nottingham Research Data Repository
collection Online Access
description X-ray computed tomography (XCT) has recently become recognised as a viable method of surface topography measurement for additively manufactured (AM) metal parts [1–5]. AM is capable of producing internal features that are inaccessible to other surface topography measurement instruments [6,7], which makes XCT topography measurement particularly interesting to the AM community. A rigorous assessment of the ability of XCT systems to measure surface topography is, however, yet to be performed, and represents a complex challenge that must account for the large number of control variables involved in XCT measurement (e.g. voltage, current, magnification, computational corrections, filtering and surface determination). The aim of this study is to investigate the sensitivity of XCT topography measurement to some such control variables. More specifically, the effects of varying magnification (i.e. the ratio between source-to-detector distance and source-to-object distance [8]) and reconstruction sampling (i.e. the resolution of the volumetric grid filled during reconstruction [9]) are investigated. These variables have been chosen for their influence on the voxel size of the volumetric dataset, which in turn affects the extracted topography, and any subsequent texture assessment. In this work, the internal top surface of a hollow Ti6Al4V cubic artefact with an external size of (10 × 10 × 10) mm, fabricated via laser powder bed fusion (LPBF) is considered (see figure 1). Measurements are performed with geometric magnification (the first control variable) set at 5×, 10×, 20× and 50×, aligned with typical magnifications used during optical surface topography measurement. The effects of super- and sub-sampling in the volume reconstruction phase (the second control variable) are investigated using Nikon software (CT Pro). Texture parameters and reconstructed topography profiles obtained as a result of XCT measurements are investigated and compared to measurements by coherence scanning interferometry (CSI) and focus variation (FV). Datasets are bandwidth-matched [10] between instruments for the quantitative comparison of texture parameters. For profile comparison, CSI, FV and XCT areal topographies are relocated with geometric registration methods. Initial results indicate that, for selected combinations of magnification and sampling reconstruction, XCT surface topography is in agreement with topography obtained by CSI, FV and stylus measurements. The authors expect this study to provide information about how these control variables can be optimised, (with the purpose of decreasing measurement complexity and time) without significantly altering the quality of the topographic result.
first_indexed 2025-11-14T19:54:02Z
format Conference or Workshop Item
id nottingham-44020
institution University of Nottingham Malaysia Campus
institution_category Local University
last_indexed 2025-11-14T19:54:02Z
publishDate 2017
recordtype eprints
repository_type Digital Repository
spelling nottingham-440202020-05-04T18:51:46Z https://eprints.nottingham.ac.uk/44020/ X-ray computed tomography of additively manufactured metal parts: the effect of magnification and reconstruction sampling on surface topography measurement Thompson, Adam Körner, Lars Senin, Nicola Lawes, Simon Leach, Richard Maskery, Ian X-ray computed tomography (XCT) has recently become recognised as a viable method of surface topography measurement for additively manufactured (AM) metal parts [1–5]. AM is capable of producing internal features that are inaccessible to other surface topography measurement instruments [6,7], which makes XCT topography measurement particularly interesting to the AM community. A rigorous assessment of the ability of XCT systems to measure surface topography is, however, yet to be performed, and represents a complex challenge that must account for the large number of control variables involved in XCT measurement (e.g. voltage, current, magnification, computational corrections, filtering and surface determination). The aim of this study is to investigate the sensitivity of XCT topography measurement to some such control variables. More specifically, the effects of varying magnification (i.e. the ratio between source-to-detector distance and source-to-object distance [8]) and reconstruction sampling (i.e. the resolution of the volumetric grid filled during reconstruction [9]) are investigated. These variables have been chosen for their influence on the voxel size of the volumetric dataset, which in turn affects the extracted topography, and any subsequent texture assessment. In this work, the internal top surface of a hollow Ti6Al4V cubic artefact with an external size of (10 × 10 × 10) mm, fabricated via laser powder bed fusion (LPBF) is considered (see figure 1). Measurements are performed with geometric magnification (the first control variable) set at 5×, 10×, 20× and 50×, aligned with typical magnifications used during optical surface topography measurement. The effects of super- and sub-sampling in the volume reconstruction phase (the second control variable) are investigated using Nikon software (CT Pro). Texture parameters and reconstructed topography profiles obtained as a result of XCT measurements are investigated and compared to measurements by coherence scanning interferometry (CSI) and focus variation (FV). Datasets are bandwidth-matched [10] between instruments for the quantitative comparison of texture parameters. For profile comparison, CSI, FV and XCT areal topographies are relocated with geometric registration methods. Initial results indicate that, for selected combinations of magnification and sampling reconstruction, XCT surface topography is in agreement with topography obtained by CSI, FV and stylus measurements. The authors expect this study to provide information about how these control variables can be optimised, (with the purpose of decreasing measurement complexity and time) without significantly altering the quality of the topographic result. 2017-06-27 Conference or Workshop Item PeerReviewed Thompson, Adam, Körner, Lars, Senin, Nicola, Lawes, Simon, Leach, Richard and Maskery, Ian (2017) X-ray computed tomography of additively manufactured metal parts: the effect of magnification and reconstruction sampling on surface topography measurement. In: 16th Conference on Metrology and properties of Engineering Surfaces, 27-29 June 2017, Göteborg, Sweden. surface texture metrology additive manufacturing X-ray computed tomography
spellingShingle surface texture
metrology
additive manufacturing
X-ray computed tomography
Thompson, Adam
Körner, Lars
Senin, Nicola
Lawes, Simon
Leach, Richard
Maskery, Ian
X-ray computed tomography of additively manufactured metal parts: the effect of magnification and reconstruction sampling on surface topography measurement
title X-ray computed tomography of additively manufactured metal parts: the effect of magnification and reconstruction sampling on surface topography measurement
title_full X-ray computed tomography of additively manufactured metal parts: the effect of magnification and reconstruction sampling on surface topography measurement
title_fullStr X-ray computed tomography of additively manufactured metal parts: the effect of magnification and reconstruction sampling on surface topography measurement
title_full_unstemmed X-ray computed tomography of additively manufactured metal parts: the effect of magnification and reconstruction sampling on surface topography measurement
title_short X-ray computed tomography of additively manufactured metal parts: the effect of magnification and reconstruction sampling on surface topography measurement
title_sort x-ray computed tomography of additively manufactured metal parts: the effect of magnification and reconstruction sampling on surface topography measurement
topic surface texture
metrology
additive manufacturing
X-ray computed tomography
url https://eprints.nottingham.ac.uk/44020/