A moduli interpretation for the non-split Cartan modular curve
Modular curves like X0(N) and X1(N) appear very frequently in arithmetic geometry. While their complex points are obtained as a quotient of the upper half plane by some subgroups of SL2(Z), they allow for a more arithmetic description as a solution to a moduli problem. We wish to give such a moduli...
| Main Authors: | , |
|---|---|
| Format: | Article |
| Published: |
Cambridge University Press
2018
|
| Online Access: | https://eprints.nottingham.ac.uk/43660/ |
| Summary: | Modular curves like X0(N) and X1(N) appear very frequently in arithmetic geometry. While their complex points are obtained as a quotient of the upper half plane by some subgroups of SL2(Z), they allow for a more arithmetic description as a solution to a moduli problem. We wish to give such a moduli description for two other modular curves, denoted here by Xnsp(p) and X+ nsp(p) associated to non-split Cartan subgroups and their normaliser in GL2(Fp). These modular curves appear for instance in Serre's problem of classifying all possible Galois structures of p-torsion points on elliptic curves over number fields. We give then a moduli-theoretic interpretation and a new proof of a result of Chen [Che98, Che00]. |
|---|