Estimating phase with a random generator: strategies and resources in multiparameter quantum metrology
Quantum metrology aims to exploit quantum phenomena to overcome classical limitations in the estimation of relevant parameters. We consider a probe undergoing a phase shift φ whose generator is randomly sampled according to a distribution with unknown concentration κ, which introduces a physical sou...
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Published: |
American Physical Society
2017
|
| Online Access: | https://eprints.nottingham.ac.uk/43505/ |
| _version_ | 1848796703279284224 |
|---|---|
| author | Yousefjani, Rozhin Nichols, Rosanna Salimi, Shahriar Adesso, Gerardo |
| author_facet | Yousefjani, Rozhin Nichols, Rosanna Salimi, Shahriar Adesso, Gerardo |
| author_sort | Yousefjani, Rozhin |
| building | Nottingham Research Data Repository |
| collection | Online Access |
| description | Quantum metrology aims to exploit quantum phenomena to overcome classical limitations in the estimation of relevant parameters. We consider a probe undergoing a phase shift φ whose generator is randomly sampled according to a distribution with unknown concentration κ, which introduces a physical source of noise. We then investigate strategies for the joint estimation of the two parameters φ and κ given a finite number N of interactions with the phase imprinting channel. We consider both single qubit and multipartite entangled probes, and identify regions of the parameters where simultaneous estimation is advantageous, resulting in up to a twofold reduction in resources. Quantum enhanced precision is achievable at moderate N, while for sufficiently large N classical strategies take over and the precision follows the standard quantum limit. We show that full-scale entanglement is not needed to reach such an enhancement, as efficient strategies using significantly fewer qubits in a scheme interpolating between the conventional sequential and parallel metrological schemes yield the same effective performance. These results may have relevant applications in optimization of sensing technologies. |
| first_indexed | 2025-11-14T19:52:12Z |
| format | Article |
| id | nottingham-43505 |
| institution | University of Nottingham Malaysia Campus |
| institution_category | Local University |
| last_indexed | 2025-11-14T19:52:12Z |
| publishDate | 2017 |
| publisher | American Physical Society |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | nottingham-435052020-05-04T18:48:58Z https://eprints.nottingham.ac.uk/43505/ Estimating phase with a random generator: strategies and resources in multiparameter quantum metrology Yousefjani, Rozhin Nichols, Rosanna Salimi, Shahriar Adesso, Gerardo Quantum metrology aims to exploit quantum phenomena to overcome classical limitations in the estimation of relevant parameters. We consider a probe undergoing a phase shift φ whose generator is randomly sampled according to a distribution with unknown concentration κ, which introduces a physical source of noise. We then investigate strategies for the joint estimation of the two parameters φ and κ given a finite number N of interactions with the phase imprinting channel. We consider both single qubit and multipartite entangled probes, and identify regions of the parameters where simultaneous estimation is advantageous, resulting in up to a twofold reduction in resources. Quantum enhanced precision is achievable at moderate N, while for sufficiently large N classical strategies take over and the precision follows the standard quantum limit. We show that full-scale entanglement is not needed to reach such an enhancement, as efficient strategies using significantly fewer qubits in a scheme interpolating between the conventional sequential and parallel metrological schemes yield the same effective performance. These results may have relevant applications in optimization of sensing technologies. American Physical Society 2017-06-05 Article PeerReviewed Yousefjani, Rozhin, Nichols, Rosanna, Salimi, Shahriar and Adesso, Gerardo (2017) Estimating phase with a random generator: strategies and resources in multiparameter quantum metrology. Physical Review A, 95 (6). 062307/1-062307/10. ISSN 2469-9934 https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.062307 doi:10.1103/PhysRevA.95.062307 doi:10.1103/PhysRevA.95.062307 |
| spellingShingle | Yousefjani, Rozhin Nichols, Rosanna Salimi, Shahriar Adesso, Gerardo Estimating phase with a random generator: strategies and resources in multiparameter quantum metrology |
| title | Estimating phase with a random generator: strategies and resources in multiparameter quantum metrology |
| title_full | Estimating phase with a random generator: strategies and resources in multiparameter quantum metrology |
| title_fullStr | Estimating phase with a random generator: strategies and resources in multiparameter quantum metrology |
| title_full_unstemmed | Estimating phase with a random generator: strategies and resources in multiparameter quantum metrology |
| title_short | Estimating phase with a random generator: strategies and resources in multiparameter quantum metrology |
| title_sort | estimating phase with a random generator: strategies and resources in multiparameter quantum metrology |
| url | https://eprints.nottingham.ac.uk/43505/ https://eprints.nottingham.ac.uk/43505/ https://eprints.nottingham.ac.uk/43505/ |