The automorphisms of Petit's algebras
Let σ be an automorphism of a field K with fixed field F. We study the automorphisms of nonassociative unital algebras which are canonical generalizations of the associative quotient algebras K[t; σ]=fK[t; σ] obtained when the twisted polynomialf 2 K[t; σ] is invariant, and were first defined by Pet...
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Taylor & Francis
2017
|
| Subjects: | |
| Online Access: | https://eprints.nottingham.ac.uk/42590/ |
| Summary: | Let σ be an automorphism of a field K with fixed field F. We study the automorphisms of nonassociative unital algebras which are canonical generalizations of the associative quotient algebras K[t; σ]=fK[t; σ] obtained when the twisted polynomialf 2 K[t; σ] is invariant, and were first defined by Petit. We compute all their automorphisms if V commutes with all automorphisms in AutF (K) and n < m-1. In thecase where K=F is a finite Galois field extension, we obtain more detailed information on the structure of the automorphism groups of these nonassociative unital algebras over F. We also briefly investigate when two such algebras are isomorphic. |
|---|