Influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions
The paper summarizes the relative influence of different pavement thermo-physical properties on the thermal response of pavement cross-sections, and how their relative behaviour changes in different climatic regions. A simplified one-dimensional heat flow modelling tool was developed to achieve this...
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Published: |
American Society of Civil Engineers
2012
|
| Subjects: | |
| Online Access: | https://eprints.nottingham.ac.uk/42310/ |
| _version_ | 1848796459258871808 |
|---|---|
| author | Hall, Matthew R. Dehdezi, Pejman Keikhaei Dawson, Andrew R. Grenfell, James Isola, Riccardo |
| author_facet | Hall, Matthew R. Dehdezi, Pejman Keikhaei Dawson, Andrew R. Grenfell, James Isola, Riccardo |
| author_sort | Hall, Matthew R. |
| building | Nottingham Research Data Repository |
| collection | Online Access |
| description | The paper summarizes the relative influence of different pavement thermo-physical properties on the thermal response of pavement cross-sections, and how their relative behaviour changes in different climatic regions. A simplified one-dimensional heat flow modelling tool was developed to achieve this using a finite difference solution method for studying the dynamic temperature profile within pavement constructions. This approach allows for a wide variety and daily varying climatic conditions to be applied, where limited or historic thermo-physical material properties are available, and permits the thermal behaviour of the pavement layers to be accurately modelled and modified. The model was used with available thermal pavement materials properties and with properties determined specifically for the study reported here. The pavement materials included in the study comprised both conventional bituminous and cementicious mixes as well as unconventional mixtures that allowed a wide range of densities, thermal conductivities, specific heat capacities and thermal diffusivities to be investigated. Initially, the model was validated against in-situ pavement data collected in the USA in five widely differing climatic regions. It was found to give results at least as good as others available from more computationally expensive approaches such as 2D and 3D FE commercial packages. Then the model was used to compute the response for the same locations had the thermal properties been changed by using some of the unconventional pavement materials been used. This revealed that reduction of temperature range by several degrees was easily possible (with implications for reduction of rutting, fatigue and the Urban Heat Island effect) and that depth of penetration of peak temperatures was also achievable (with implications for winter freeze-thaw). However, the results showed that there was little opportunity to displace the peak temperatures in time. |
| first_indexed | 2025-11-14T19:48:19Z |
| format | Article |
| id | nottingham-42310 |
| institution | University of Nottingham Malaysia Campus |
| institution_category | Local University |
| last_indexed | 2025-11-14T19:48:19Z |
| publishDate | 2012 |
| publisher | American Society of Civil Engineers |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | nottingham-423102020-05-04T16:32:07Z https://eprints.nottingham.ac.uk/42310/ Influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions Hall, Matthew R. Dehdezi, Pejman Keikhaei Dawson, Andrew R. Grenfell, James Isola, Riccardo The paper summarizes the relative influence of different pavement thermo-physical properties on the thermal response of pavement cross-sections, and how their relative behaviour changes in different climatic regions. A simplified one-dimensional heat flow modelling tool was developed to achieve this using a finite difference solution method for studying the dynamic temperature profile within pavement constructions. This approach allows for a wide variety and daily varying climatic conditions to be applied, where limited or historic thermo-physical material properties are available, and permits the thermal behaviour of the pavement layers to be accurately modelled and modified. The model was used with available thermal pavement materials properties and with properties determined specifically for the study reported here. The pavement materials included in the study comprised both conventional bituminous and cementicious mixes as well as unconventional mixtures that allowed a wide range of densities, thermal conductivities, specific heat capacities and thermal diffusivities to be investigated. Initially, the model was validated against in-situ pavement data collected in the USA in five widely differing climatic regions. It was found to give results at least as good as others available from more computationally expensive approaches such as 2D and 3D FE commercial packages. Then the model was used to compute the response for the same locations had the thermal properties been changed by using some of the unconventional pavement materials been used. This revealed that reduction of temperature range by several degrees was easily possible (with implications for reduction of rutting, fatigue and the Urban Heat Island effect) and that depth of penetration of peak temperatures was also achievable (with implications for winter freeze-thaw). However, the results showed that there was little opportunity to displace the peak temperatures in time. American Society of Civil Engineers 2012-01-31 Article PeerReviewed Hall, Matthew R., Dehdezi, Pejman Keikhaei, Dawson, Andrew R., Grenfell, James and Isola, Riccardo (2012) Influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions. Journal of Materials in Civil Engineering, 24 (1). pp. 32-47. ISSN 1943-5533 Pavements; Heat transfer; Thermal diffusion; Temperature distribution; Numerical models http://ascelibrary.org/doi/10.1061/%28ASCE%29MT.1943-5533.0000357 doi:10.1061/(ASCE)MT.1943-5533.0000357 doi:10.1061/(ASCE)MT.1943-5533.0000357 |
| spellingShingle | Pavements; Heat transfer; Thermal diffusion; Temperature distribution; Numerical models Hall, Matthew R. Dehdezi, Pejman Keikhaei Dawson, Andrew R. Grenfell, James Isola, Riccardo Influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions |
| title | Influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions |
| title_full | Influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions |
| title_fullStr | Influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions |
| title_full_unstemmed | Influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions |
| title_short | Influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions |
| title_sort | influence of the thermophysical properties of pavement materials on the evolution of temperature depth profiles in different climatic regions |
| topic | Pavements; Heat transfer; Thermal diffusion; Temperature distribution; Numerical models |
| url | https://eprints.nottingham.ac.uk/42310/ https://eprints.nottingham.ac.uk/42310/ https://eprints.nottingham.ac.uk/42310/ |