Electrical switching of an antiferromagnet

Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates...

Full description

Bibliographic Details
Main Authors: Wadley, P., Howells, Bryn, Železný, J., Andrews, C., Hills, V., Campion, R.P., Novák, V., Olejnik, K., Maccherozzi, F., Dhesi, S.S., Martin, S., Wagner, T., Wunderlich, J., Freimuth, F., Mokrousov, Y., Kunes, J., Chauhan, Jasbinder, Grzybowski, M.J., Rushforth, A.W., Edmonds, K.W., Gallagher, B.L., Jungwirth, T.
Format: Article
Published: American Association for the Advancement of Science 2016
Online Access:https://eprints.nottingham.ac.uk/41064/
_version_ 1848796188716826624
author Wadley, P.
Howells, Bryn
Železný, J.
Andrews, C.
Hills, V.
Campion, R.P.
Novák, V.
Olejnik, K.
Maccherozzi, F.
Dhesi, S.S.
Martin, S.
Wagner, T.
Wunderlich, J.
Freimuth, F.
Mokrousov, Y.
Kunes, J.
Chauhan, Jasbinder
Grzybowski, M.J.
Rushforth, A.W.
Edmonds, K.W.
Gallagher, B.L.
Jungwirth, T.
author_facet Wadley, P.
Howells, Bryn
Železný, J.
Andrews, C.
Hills, V.
Campion, R.P.
Novák, V.
Olejnik, K.
Maccherozzi, F.
Dhesi, S.S.
Martin, S.
Wagner, T.
Wunderlich, J.
Freimuth, F.
Mokrousov, Y.
Kunes, J.
Chauhan, Jasbinder
Grzybowski, M.J.
Rushforth, A.W.
Edmonds, K.W.
Gallagher, B.L.
Jungwirth, T.
author_sort Wadley, P.
building Nottingham Research Data Repository
collection Online Access
description Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the antiferromagnetic order, we demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 106 ampere per square centimeter. Electrical writing is combined in our solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics.
first_indexed 2025-11-14T19:44:01Z
format Article
id nottingham-41064
institution University of Nottingham Malaysia Campus
institution_category Local University
last_indexed 2025-11-14T19:44:01Z
publishDate 2016
publisher American Association for the Advancement of Science
recordtype eprints
repository_type Digital Repository
spelling nottingham-410642020-05-04T17:37:57Z https://eprints.nottingham.ac.uk/41064/ Electrical switching of an antiferromagnet Wadley, P. Howells, Bryn Železný, J. Andrews, C. Hills, V. Campion, R.P. Novák, V. Olejnik, K. Maccherozzi, F. Dhesi, S.S. Martin, S. Wagner, T. Wunderlich, J. Freimuth, F. Mokrousov, Y. Kunes, J. Chauhan, Jasbinder Grzybowski, M.J. Rushforth, A.W. Edmonds, K.W. Gallagher, B.L. Jungwirth, T. Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the antiferromagnetic order, we demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 106 ampere per square centimeter. Electrical writing is combined in our solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics. American Association for the Advancement of Science 2016-02-05 Article PeerReviewed Wadley, P., Howells, Bryn, Železný, J., Andrews, C., Hills, V., Campion, R.P., Novák, V., Olejnik, K., Maccherozzi, F., Dhesi, S.S., Martin, S., Wagner, T., Wunderlich, J., Freimuth, F., Mokrousov, Y., Kunes, J., Chauhan, Jasbinder, Grzybowski, M.J., Rushforth, A.W., Edmonds, K.W., Gallagher, B.L. and Jungwirth, T. (2016) Electrical switching of an antiferromagnet. Science, 351 (6273). pp. 587-590. ISSN 1095-9203 http://science.sciencemag.org/content/351/6273/587 doi:10.1126/science.aab1031 doi:10.1126/science.aab1031
spellingShingle Wadley, P.
Howells, Bryn
Železný, J.
Andrews, C.
Hills, V.
Campion, R.P.
Novák, V.
Olejnik, K.
Maccherozzi, F.
Dhesi, S.S.
Martin, S.
Wagner, T.
Wunderlich, J.
Freimuth, F.
Mokrousov, Y.
Kunes, J.
Chauhan, Jasbinder
Grzybowski, M.J.
Rushforth, A.W.
Edmonds, K.W.
Gallagher, B.L.
Jungwirth, T.
Electrical switching of an antiferromagnet
title Electrical switching of an antiferromagnet
title_full Electrical switching of an antiferromagnet
title_fullStr Electrical switching of an antiferromagnet
title_full_unstemmed Electrical switching of an antiferromagnet
title_short Electrical switching of an antiferromagnet
title_sort electrical switching of an antiferromagnet
url https://eprints.nottingham.ac.uk/41064/
https://eprints.nottingham.ac.uk/41064/
https://eprints.nottingham.ac.uk/41064/