Electrical switching of an antiferromagnet
Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates...
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Published: |
American Association for the Advancement of Science
2016
|
| Online Access: | https://eprints.nottingham.ac.uk/41064/ |
| _version_ | 1848796188716826624 |
|---|---|
| author | Wadley, P. Howells, Bryn Železný, J. Andrews, C. Hills, V. Campion, R.P. Novák, V. Olejnik, K. Maccherozzi, F. Dhesi, S.S. Martin, S. Wagner, T. Wunderlich, J. Freimuth, F. Mokrousov, Y. Kunes, J. Chauhan, Jasbinder Grzybowski, M.J. Rushforth, A.W. Edmonds, K.W. Gallagher, B.L. Jungwirth, T. |
| author_facet | Wadley, P. Howells, Bryn Železný, J. Andrews, C. Hills, V. Campion, R.P. Novák, V. Olejnik, K. Maccherozzi, F. Dhesi, S.S. Martin, S. Wagner, T. Wunderlich, J. Freimuth, F. Mokrousov, Y. Kunes, J. Chauhan, Jasbinder Grzybowski, M.J. Rushforth, A.W. Edmonds, K.W. Gallagher, B.L. Jungwirth, T. |
| author_sort | Wadley, P. |
| building | Nottingham Research Data Repository |
| collection | Online Access |
| description | Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the antiferromagnetic order, we demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 106 ampere per square centimeter. Electrical writing is combined in our solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics. |
| first_indexed | 2025-11-14T19:44:01Z |
| format | Article |
| id | nottingham-41064 |
| institution | University of Nottingham Malaysia Campus |
| institution_category | Local University |
| last_indexed | 2025-11-14T19:44:01Z |
| publishDate | 2016 |
| publisher | American Association for the Advancement of Science |
| recordtype | eprints |
| repository_type | Digital Repository |
| spelling | nottingham-410642020-05-04T17:37:57Z https://eprints.nottingham.ac.uk/41064/ Electrical switching of an antiferromagnet Wadley, P. Howells, Bryn Železný, J. Andrews, C. Hills, V. Campion, R.P. Novák, V. Olejnik, K. Maccherozzi, F. Dhesi, S.S. Martin, S. Wagner, T. Wunderlich, J. Freimuth, F. Mokrousov, Y. Kunes, J. Chauhan, Jasbinder Grzybowski, M.J. Rushforth, A.W. Edmonds, K.W. Gallagher, B.L. Jungwirth, T. Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the antiferromagnetic order, we demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 106 ampere per square centimeter. Electrical writing is combined in our solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics. American Association for the Advancement of Science 2016-02-05 Article PeerReviewed Wadley, P., Howells, Bryn, Železný, J., Andrews, C., Hills, V., Campion, R.P., Novák, V., Olejnik, K., Maccherozzi, F., Dhesi, S.S., Martin, S., Wagner, T., Wunderlich, J., Freimuth, F., Mokrousov, Y., Kunes, J., Chauhan, Jasbinder, Grzybowski, M.J., Rushforth, A.W., Edmonds, K.W., Gallagher, B.L. and Jungwirth, T. (2016) Electrical switching of an antiferromagnet. Science, 351 (6273). pp. 587-590. ISSN 1095-9203 http://science.sciencemag.org/content/351/6273/587 doi:10.1126/science.aab1031 doi:10.1126/science.aab1031 |
| spellingShingle | Wadley, P. Howells, Bryn Železný, J. Andrews, C. Hills, V. Campion, R.P. Novák, V. Olejnik, K. Maccherozzi, F. Dhesi, S.S. Martin, S. Wagner, T. Wunderlich, J. Freimuth, F. Mokrousov, Y. Kunes, J. Chauhan, Jasbinder Grzybowski, M.J. Rushforth, A.W. Edmonds, K.W. Gallagher, B.L. Jungwirth, T. Electrical switching of an antiferromagnet |
| title | Electrical switching of an antiferromagnet |
| title_full | Electrical switching of an antiferromagnet |
| title_fullStr | Electrical switching of an antiferromagnet |
| title_full_unstemmed | Electrical switching of an antiferromagnet |
| title_short | Electrical switching of an antiferromagnet |
| title_sort | electrical switching of an antiferromagnet |
| url | https://eprints.nottingham.ac.uk/41064/ https://eprints.nottingham.ac.uk/41064/ https://eprints.nottingham.ac.uk/41064/ |