Molecular symmetry group analysis of the low-wavenumber torsions and vibration-torsions in the S1 state and ground state cation of p-xylene: an investigation using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy

For the first time, a molecular symmetry group (MSG) analysis has been undertaken in the investigation of the electronic spectroscopy of p-xylene (p-dimethylbenzene). Torsional and vibration-torsional (vibtor) levels in the S1 state and ground state of the cation of p-xylene (p-dimethylbenzene) are...

Full description

Bibliographic Details
Main Authors: Gardner, Adrian M., Tuttle, William D., Groner, Peter, Wright, Timothy G.
Format: Article
Published: American Institute of Physics 2017
Online Access:https://eprints.nottingham.ac.uk/40679/
_version_ 1848796114172510208
author Gardner, Adrian M.
Tuttle, William D.
Groner, Peter
Wright, Timothy G.
author_facet Gardner, Adrian M.
Tuttle, William D.
Groner, Peter
Wright, Timothy G.
author_sort Gardner, Adrian M.
building Nottingham Research Data Repository
collection Online Access
description For the first time, a molecular symmetry group (MSG) analysis has been undertaken in the investigation of the electronic spectroscopy of p-xylene (p-dimethylbenzene). Torsional and vibration-torsional (vibtor) levels in the S1 state and ground state of the cation of p-xylene (p-dimethylbenzene) are investigated using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy. In the present work, we concentrate on the 0–350 cm 1 region, where there are a number of torsional and vibtor bands and we discuss the assignment of this region. In an accompanying paper [Tuttle et al. J. Chem. Phys. XXX, xxxxxx (2016)], we examine the 350–600 cm 1 region where vibtor levels are observed as part of a Fermi resonance. The similarity of much of the observed spectral activity to that in the related substituted benzenes, toluene and para-fluorotoluene, is striking, despite the different symmetries. The discussion necessitates a consideration of the MSG of p-xylene, which has been designated G72, but we shall also designate [3,3]D2h and we include the symmetry operations, character table and direct product table for this. We also discuss the symmetries of the internal rotor (torsional) levels and the selection rules for the particular electronic transition of p-xylene investigated here.
first_indexed 2025-11-14T19:42:50Z
format Article
id nottingham-40679
institution University of Nottingham Malaysia Campus
institution_category Local University
last_indexed 2025-11-14T19:42:50Z
publishDate 2017
publisher American Institute of Physics
recordtype eprints
repository_type Digital Repository
spelling nottingham-406792020-05-04T18:38:34Z https://eprints.nottingham.ac.uk/40679/ Molecular symmetry group analysis of the low-wavenumber torsions and vibration-torsions in the S1 state and ground state cation of p-xylene: an investigation using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy Gardner, Adrian M. Tuttle, William D. Groner, Peter Wright, Timothy G. For the first time, a molecular symmetry group (MSG) analysis has been undertaken in the investigation of the electronic spectroscopy of p-xylene (p-dimethylbenzene). Torsional and vibration-torsional (vibtor) levels in the S1 state and ground state of the cation of p-xylene (p-dimethylbenzene) are investigated using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy. In the present work, we concentrate on the 0–350 cm 1 region, where there are a number of torsional and vibtor bands and we discuss the assignment of this region. In an accompanying paper [Tuttle et al. J. Chem. Phys. XXX, xxxxxx (2016)], we examine the 350–600 cm 1 region where vibtor levels are observed as part of a Fermi resonance. The similarity of much of the observed spectral activity to that in the related substituted benzenes, toluene and para-fluorotoluene, is striking, despite the different symmetries. The discussion necessitates a consideration of the MSG of p-xylene, which has been designated G72, but we shall also designate [3,3]D2h and we include the symmetry operations, character table and direct product table for this. We also discuss the symmetries of the internal rotor (torsional) levels and the selection rules for the particular electronic transition of p-xylene investigated here. American Institute of Physics 2017-03-23 Article PeerReviewed Gardner, Adrian M., Tuttle, William D., Groner, Peter and Wright, Timothy G. (2017) Molecular symmetry group analysis of the low-wavenumber torsions and vibration-torsions in the S1 state and ground state cation of p-xylene: an investigation using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy. Journal of Chemical Physics, 146 (12). p. 124308. ISSN 1089-7690 http://aip.scitation.org/doi/10.1063/1.4977896 doi:10.1063/1.4977896 doi:10.1063/1.4977896
spellingShingle Gardner, Adrian M.
Tuttle, William D.
Groner, Peter
Wright, Timothy G.
Molecular symmetry group analysis of the low-wavenumber torsions and vibration-torsions in the S1 state and ground state cation of p-xylene: an investigation using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy
title Molecular symmetry group analysis of the low-wavenumber torsions and vibration-torsions in the S1 state and ground state cation of p-xylene: an investigation using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy
title_full Molecular symmetry group analysis of the low-wavenumber torsions and vibration-torsions in the S1 state and ground state cation of p-xylene: an investigation using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy
title_fullStr Molecular symmetry group analysis of the low-wavenumber torsions and vibration-torsions in the S1 state and ground state cation of p-xylene: an investigation using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy
title_full_unstemmed Molecular symmetry group analysis of the low-wavenumber torsions and vibration-torsions in the S1 state and ground state cation of p-xylene: an investigation using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy
title_short Molecular symmetry group analysis of the low-wavenumber torsions and vibration-torsions in the S1 state and ground state cation of p-xylene: an investigation using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy
title_sort molecular symmetry group analysis of the low-wavenumber torsions and vibration-torsions in the s1 state and ground state cation of p-xylene: an investigation using resonance-enhanced multiphoton ionization (rempi) and zero-kinetic-energy (zeke) spectroscopy
url https://eprints.nottingham.ac.uk/40679/
https://eprints.nottingham.ac.uk/40679/
https://eprints.nottingham.ac.uk/40679/